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NUMERICAL CALCULATTIONS FOR THE CHARACTERISTICS OF A GAS
FLOWING AXTALLY THROUGH A CONSTRICTED ARC

By Velvin R. Watson and Eva B. Pegot

Ames Research Center
SUMMARY

Numerical programs to obtain solutions for the characteristics of a gas
flowing axially through a constricted arc are presented. The numerical pro-
grams use real equilibrium gas properties and solve simultaneously the energy,
momentum, and continuity equations. Axial conduction, radial pressure gradi-
ents, and radial voltage gradients are neglected. The solutions give the arc
characteristics in sufficient detail to evaluate the many approximate solu-
tions, and the computing time (approximately 2 min) is sufficiently short
that the programs may be used directly to obtain design criteria for plasma
generators.

Numerical solutions for arcs within 0.635 and 1.27-cm-diameter
constrictors are presented and the design optimization of constricted-arc
plasma generators is discussed. The numerical solutions indicate that with
nitrogen, total enthalpies in excess of 5><lO8 J/kg and velocities in excess
of 18,000 m/s may be obtainable at the exit of a constricted-arc plasma
generator.

INTRODUCT ION

The constricted arc has recently been employed (as in the device shown
in fig. 1) to generate hot, dense plasma flows for production of the very
high heat fluxes required in materials testing, and to produce thrust.
Approximate solutions for the characteristics of the flow through this con-
stricted arc (refs. 1-6) predict the arc-column characteristics with varying
degrees of accuracy. The discrepancies between actual and predicted charac-
teristics are a result of the simplifying approximations incorporated into
each model to permit an analytical or semianalytical solution; the extent to
which these various approximations influence the behavior of the solutions,
however, is not readily apparent.

The purpose of this paper is to present numerical methods for solving a
more complete model with fewer and, presumably, more realistic assumptions.
These solutions are sufficiently detailed to evaluate the simplified models
and to gain further insight into the behavior of the constricted arec.

An evaluation of the approximations for the theoretical model presented
in reference 1 has already been made and was presented in reference 7. The
numerical solutions used for this evaluation are presented in appendix A.




Several arc characteristics were studied with these numerical methods
and the results of these studies are presented. The results indicate methods
for optimizing the design of a plasma generator for particular arc character-
istics, and these methods are discussed.

In a previous work by Masser (ref. 8) a similarly complete method was
presented for solving the constricted-arc problem. However, it will be shown
that to obtain the same accuracy Masser's method may require a longer comput-
ing time than the method presented herein.

NOMENCLATURE
A cross-sectional area of the constrictor, m®
Ag parameter of the linear approximation o = AP, mho /W
a zero frequency speed of sound, m/s
cp specific heat at constant pressure, J/kg °k
a diameter
E voltage gradient, V/m

172
2.4/RA,

mass -average enthalpy, J/kg (Hy = O at 0° x)

SR

enthalpy averaged over space, J/kg (Hg = O at 0° K)

Hg

He theoretical mass average enthalpy in the asymptotic region of the arc
(ref. 1), 0.133 cpI/kRA;M 2, J/kg

h enthalpy, J/kg (h = 0 at 0° K)

hg center-line enthalpy, J/kg

total enthalpy, J/kg

§ &

theoretical center-line enthalpy in the asymptotic region of the arc
(ref. 1), 0.307 cpI/kRA;M 2, J/ke

I current, A

K thermal conductivity, W/m K
ol mass -flow rate, kg/s

P pressure, N/m®
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p, constrictor inlet pressure, N/m?

q local heat transfer rate from the surface of the arc column to the
constrictor wall, W/u®

Qy rad}agive component of the heat transfer rate to the constrictor wall,
W/m

ag total heat transfer rate to the constrictor wall, W/m®

de theoretical heat transfer rate from the surface of the/arc column in the
asymptotic region of the arc (ref. 1), 0.383 I/R2Agl 2 W/

R constrictor radius, m; also gas constant

r radial distance from the axis of the arc column, m

T temperature, OK

u axial velocity, m/s

v radial velocity, m/s

Z compressibility

z axial distance along the column, m

z, characteristic length for the arc (ref. 1), mcp/nk, m
%) azimuthal coordinate of the arc column, radians

i viscosity, Ns/m2

Ho magnetic permeability, N/A2
P density, kg/m3
o electric conductivity, mho/m

¢  thermal conductivity function, [ k da, W/m (¢ = 0 at 0° k)
DEVELOPMENT OF NUMERICAL ANATYSIS

Theoretical Models for the Numerical Calculations

The theoretical models for this work are assumed to be governed by one
of the following two sets of equations. Equation (1) is applicable to the
case of axial symmetry; equation (2) allows for asymmetric flow without
swirl.
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In presenting the equations in the above form it is assumed that:

1. The gas flow is steady and laminar.

2. The electric discharge is stationary and the electric potential is
constant on planes perpendicular to the axis.

3. Axial heat conduction is negligible compared to radial heat
conduction.

k. Torentz forces are negligible compared to dynamic and static
pressure forces.

5. The radial pressure gradient is negligible compared to the static
pressure.

A detailed discussion of these assumptions is presented in reference 1.

In comparison, the model of reference 1 contains all of the above
assumptions and approximations in addition to the following simplifying

approximations:




1. The mass flux is assumed constant throughout the constrictor.

2. The enthalpy profile at the constrictor inlet is assumed to be a
Bessel function.

3. The more important gas properties - enthalpy, thermal conductivity
potential, and electrical conductivity - are assumed to be linearly related
and the radiance and viscosity are neglected.

The gas properties used in the numerical solutions for this report are
theoretical estimates of real, equilibrium properties for nitrogen and hydro-
gen and are shown in figures 2 and 3. (In some of the numerical calculations
the radiance of air was used in place of the radiance of nitrogen; so the
radiance of air is also shown in figs. 2 and 3.) Table I lists the source
for each of these gas properties (refs. 9-11).

Numerical Procedures

The numerical procedure for solving equations (1) and (2) is to satisfy
finite-difference representations of the equations by forward marching from
assumed upstream and constrictor wall boundary conditions. The step-by-step
procedure for obtaining solutions to equation (2) is presented below. Fig-
ure 4 illustrates the arrangement of the finite-difference network.

1. Establish the following initial and boundary conditions:

(a) Enthalpy distribution at station 1
(b) Velocity distribution at station 1

(c) Enthalpy of the gas adjacent to the constrictor wall, that is,
the enthalpy of the gas at the wall temperature

(d) The pressure at station 1
(e) The total current through the constrictor

2. Evaluate the distribution of the following gas properties at sta-
tion 1 from the known values of enthalpy and pressure:

(a) Thermal conductivity potential
(b) Electrical conductivity

(c) Radiance

(d) Viscosity

(e) Density
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3. Evaluate the electrical conductance at station 1 by integrating the
electrical conductivity over the area at station 1. Evaluate the electrical
voltage gradient at station 1 from the total current and electrical
conductance.

. Evaluate the total flow rate by integrating the local mass flow, pu,
over the area at station 1.

5. Compute the enthalpy at all mesh points at station 2 from the energy
equation.

6. Estimate a trial pressure drop between stations 1 and 2; calculate
the velocity at station 2 from the momentum equation.

T. Evaluate the density for all mesh points at station 2 from the known
values of enthalpy and pressure.

8. Evaluate the total flow rate at station 2 by the same method as
described in step L.

9. 1If the total flow rate at station 2 agrees with the specified flow
rate to within the specified accuracy, continue by repeating steps 2 through
9 for each new station; otherwise, change the trial pressure drop between
stations 1 and 2 and repeat steps 6, 7, and 8. (To increase the flow rate at
station 2, the trial pressure drop must be increased for subsonic flow values
and decreased for supersonic flow values.)

If a repeated change of the trial pressure drop does not produce a
calculated flow rate sufficiently near the specified flow rate, then either
the calculations have become unstable or the flow has been aerodynamically
choked in the tube. If the flow has become choked, the calculations can be
continued into the supersonic region by causing the diameter to increase and
by reversing the conditions on the trial pressure at the station of choking;
that is, if the flow rate is too large at the station, then the trial pressure

drop should be increased.

The procedure for solving equation (1) is similar except that the radial
convection term is present in the momentum and energy equations. The radial
mass flux required for the radial convection terms is determined by means of
a local mass flux balance in each volume element, starting with the center
element; that is, for the center volume element between stations n and n + 1,
the radial mass flux into this volume i1s equal to the axial mass flux out at
station n + 1 minus the axial mass flux in at station n. For computing
convenience the radial momentum and energy fluxes between stations n and
n + 1 are added downstream between stations n + 1 and n + 2.

Fortran Programs

The programs that solve equations (1) and (2) are written in Fortran IT
and are presented in appendixes B and C. Included in the appendixes are
descriptions of the required subroutines and definitions of the variables used

within the programs.
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The programs that calculate the gas properties from known values of
enthalpy and pressure are given in appendix D.

The program that prepares the magnetic tape required for the program
given in appendix D from a table of gas properties is given in appendix E.

Display of Solutions

The above Fortran programs solve for the local state properties and
velocity of the gas throughout the constricted arc. TFor the symmetric arc,
the distribution of these local properties can easily be visualized with an
oblique projection as shown in figure 5. Figure 5(a) represents a constant
area constrictor whereas figure 5(b) represents a constrictor with a contoured
inlet section. The horizontal scale represents the radial distance from the
axis of symmetry, the oblique scale represents the axial distance within the
constrictor, and the vertical scale represents the magnitude of the local
property - in this illustration, enthalpy. The local values of enthalpy,
mass flow, energy flow, velocity, and momentum flow are illustrated with these
oblique projections in parts (a) through (e) of figures 6 through 34.

All arc-column characteristics of interest can be calculated from the
local properties obtained from the numerical solutions. Local properties
that have been calculated and plotted as functions of axial distance are
center-line enthalpy, average enthalpy (averaged over both space coordinates
or mass flux coordinates) voltage, constrictor wall heat transfer rate, and
static pressure. These are shown in parts (f) through (k), respectively, of
figures 6 to 34. The predictions from the analytical model of reference 1
for the constricted arc with negligible radiation losses are also shown 1in
parts (f) through (j) for comparison. The program that plots these graphs
from the results of the numerical program given in appendix B, is given In
appendix F.

The results for the asymmetric arc cannot be shown completely by the
oblique projections used to display the results for the symmetric arc.
Nevertheless, the tabular output of the above programs can be visualized if
the results are arranged as shown in figure 35, wherein the magnitudes of the
enthalpy and the mass flux are shown as functions of radius and azimuthal
position at each axial station.

Although the arc is not symmetric, the hot section of the arc does not
rotate with axial distance, and the values of the gas properties on a plane
of constant azimuthal position that passes through the hot spot is of inter-
est. The values of the gas properties on this plane can be shown by the
oblique projection as illustrated in figure 36.

Computational Accuracy

Mesh size.- The calculations for the symmetric arc were made with 13
radial mesh points between the constrictor axis and the constrictor wall and
with sufficient axial stations to yield a stable solution (usually between



200 and 1000 stations). A comparison was made for a case in which only the
mesh size was changed. The number of radial mesh points was changed from 13
to 26 and the number of axial stations was changed from 263 to 87. The heat
flux to the constrictor wall, which is obtained from the derivatives of the
local enthalpy profile, changed the most (nearly 10 percent) whereas the mass-
averaged enthalpy which is obtained from the integral of the local enthalpy
profile, changed by less than 3 percent. The heat transfer rate is the only
property that is obtained from a derivative, and most of the arc properties
changed less than 5 percent as a result of the change in mesh size.

Stability.- A rigorous stability criterion for the finite difference
solutions of these nonlinear equations is not known. However, a stability
criterion for the finite difference solution of linear parabolic equations is
that

where
u gas velocity

o} thermal diffusivity

Furthermore, whenever the local values of Az/ArZ exceeded this limit in the
numerical calculations of the nonlinear equations, instabilities were encoun-
tered. Therefore, the above criterion for stability appears to apply locally
for the nonlinear equations, and a step was added to the above numerical pro-
cedure to keep the local value of Az/Ar® less than this limit.

Instabilities were encountered in the program for the numerical calcula-
tions for equation (1) when the pressures were high. These instabilities were
eliminated by changing the method of handling the radial convection. The
instabilities were encountered when the momentum and energy that were con-
vected radially between stations n and n + 1 were added at station n + 2 as
described under numerical procedures. Adding one-fourth of this radially con-
vected momentum and energy to each of the stations n+ 2, n+ 3, n+ k4, and
n + 5 eliminated the instability.

Computation time.- The programs presented herein are written in Fortran
IT and were executed by an IBM 7094. The computation time required for the
calculation of the solutions is approximately 2 minutes. The time for each
case shown in figures is given in table IT.

The computing time is proportional to the dimensionless length of the
constrictor and is approximately proportional to the cube of the number of
radial mesh points.
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It will be shown in the sections that follow that the numerical solutions
display the qualitative features of the constricted arc in sufficient detail
t0 gain an understanding of the arc column and to evaluate the various
approximate analyses of the constricted arc.

Discussion

The computation times for the programs for the first set of equations
(approximately 2 min) are sufficiently short that it appears feasible to use
these programs directly to obtain design criteria for plasma generators.

Several physical phenomena that were neglected in these calculations can
be included without greatly increasing the complexity or calculation times
of the program. For example, if the operating conditions are changed so that
the magnetic pressure term will not be negligible, this term can easily be
included in the calculations. (The current distribution is known and because
of symmetry, the magnetic field is easily calculated.) Also, the effects of
radiation absorption could be approximated if the frequency of the radiation
were divided into intervals and the radiation and absorption path length were
specified for each frequency interval. The radiation at all frequencies for
which the path length is much greater than the constrictor radius could be
specified with one term and the gas considered to be transparent to this
radiation, and the radiation at all frequencies for which the path length is
much less than the radial mesh increment could be included as a single term
similar to the thermal conduction term. Since the varilation of radiation
with axial distance is small compared to the variation of radiation with
radial distance, the radiation absorbed at each axial station can be calcu-
lated approximately from the temperature and density profiles of the previous
axial station. For the higher flow rates, turbulence may become significant
and the convective transfer of energy and momentum could be approximated with
the Prandtl mixing length theory.

The starting conditions (i.e., the enthalpy and velocity at the first
axial station) are usually unknown and must be assumed. Figures 6 through 9
compare solutions in which only these assumed starting conditions were
changed. Here one can see that the effect of the starting conditions on the
solutions at very short characteristic lengths (i.e., very small z/zo) is
severe. Nevertheless, this effect diminishes rapidly downstream, and even at
moderately small characteristic lengths the effect of the starting conditions
is small.

A procedure for the numerical solution of equation (1) is given by
Masser (ref. 8). Comparing Masser's work with the present procedure, the two
differ in their respective location of the radial mesh points; Masser's are
fixed on streamlines whereas in the present program they are fixed in space.
Since the dominant heat-transfer mechanisms (i.e., thermal conduction, radia-
tion, and ohmic heating) are dependent upon space coordinates rather than
mass flux coordinates, the accuracy with which these terms can be calculated
depends upon the mesh distances in space coordinates. From part (b) of the
figures illustrating the solutions, it can be seen that the mesh distances in



space would vary radically if The mesh points were fixed on streamlines.
Masser's procedure, therefore, would probably require more mesh points for
the same degree of accuracy.

EVALUATION OF THE NUMERICAL SOLUTIONS

The numerical solutions were compared with an exact analytical solution
to determine whether the numerical procedures yield the proper solutions to
the equations for the theoretical models. Then the numerical solutions were
compared with experimental measurements to determine whether the theoretical
model yields the correct arc column features.

Comparison of the Numerical Solution With an Exact Solution

An exact analytical solution for a theoretical model of the arc column
with one set of boundary conditions is given in reference 1. The theoretical
model of reference 1 is the same as the theoretical model used for the numer-
ical calculations for this paper except that the model of reference 1 contains
additional simplifying approximations. (The list of additional simplifying
approximations is given in a previous section "Theoretical Models for the
Numerical Calculations.") In order to compare the numerical solutions with
the exact solution, the additional approximations of reference 1 were incor-~
porated into the model used for the numerical calculations (e.g.,linearized
gas properties were used for the numerical calculations). The number of
radial mesh points for the numerical calculation was 13 and the number of
axial mesh points was 195. The difference between the numerical solution and
the exact solution was less than 1 percent (nearly indistinguishable on a
graphical illustration) indicating that the numerical procedures give the
proper solution to the equations for the theoretical model.

Comparison of the Numerical Solutions With Experimental Results

The numerical calculations are compared with the experimental measure-
ments of the mass average enthalpy, voltage gradient, and wall heat transfer
rate in a 1.27-cm-diameter constricted-arc plasma generator (figs. 10-14),
and in a 0.635-cm-diameter constricted-arc plasma generator (figs. 15-20).
(Figs. 10-20 display 10 arc column features even though there are experimental
measurements for only three of these features. The three features for which
the numerical solutions are compared with experimental measurements are shown

in parts (n), (1), and (j) of these figures.)

The mass average enthalpy was measured experimentally by subtracting the
heat losses from the electrical power input. The 1.27-cm-diameter constrictor
was made in two modules and only the average heat transfer rate to each module
was measured. Therefore, the mass average enthalpy could be determined only
at the end of each module. The electrical voltage gradient was not measured

for all runs.

The starting conditions for the numerical calculations are not known
a priori; the distribution of enthalpy and velocity at the inlet must be
assumed. For the 1.27-cm-diameter constrictor, an arbitrary and fairly low
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value of enthalpy was selected at the start. When the average enthalpy in
the numerical calculations became equal to the average enthalpy of the gas
entering the constant area constrictor of the plasma generator, the axial
distance of the numerical calculations was made to coincide with the start of
the constrictor in the plasma generator. This is shown graphically in part
(n) of the figures wherein the curve for the numerical calculations is forced
to pass through the first data point representing the average enthalpy of the
gas entering the constant area constrictor of the plasma generator, and the
axial distance is set equal to zero at this point. (A dashed line in parts
(f) through (j) of the figures represents the analytical theory of refer-
ence 1. In figures 10 through 14, the average enthalpy of the analytical
theory was also made to match the average enthalpy of the gas entering the
constant area constrictor in the plasma generator, as shown in part (h).)

For the comparison with the experimental measurements within the
0.635-cm-diameter plasma generator (figs. 15-20), the numerical calculations
were started in the stagnation region a short distance downstream from the tip
of the cathode. It has been shown that a change in the starting conditions
strongly affects the solutions only within a short distance downstream from
the starting location. (See discussion under "Development of the Numerical
Analysis.") Therefore, since the numerical solutions were started in the
stagnation chamber, the solutions throughout the narrow constricted section
were affected very little by the assumed starting conditions; so it was not
necessary to match the average enthalpies at the inlet of the counstant area
constrictor when the numerical calculations were started in the stagnation
chamber.

The enthalpy at the start of the narrow constricted section was arbitrar-
ily assumed to be zero for the analytical model of reference 1 in figures 15
through 20. This theoretical model applies only to the constant area section,
and for predictions from this theory when the inlet enthalpy is unknown, an
arbitrary assumption of negligible enthalpy at the inlet has usually been
employed.

Values of gas radiance for the numerical calculations shown in figures 15
through 20 were taken from reference 12 rather than reference 10 and are
higher than the values given in reference 10. However, the radiation trans-
port for these calculations is small compared to the thermal conduction; con-
sequently, the solutions would be nearly the same if values of gas radiance
from reference 10 had been used.

The numerical calculations agree with the experimental measurements
within a factor of 2 and illustrate the qualitative trends of the measure-
ments. This agreement is within the agreement between the theoretical and
the measured transport properties at high temperatures.

The deviation between the numerical calculations and the experimental
data for the 0.635-cm constrictor is larger than for the 1.27-cm constrictor.
In the present numerical calculations the variation of the gas properties with
pressure was extrapolated below 1 atmosphere. The large extrapolation to the
low pressures for the comparison with the experimental results in the 0.635-cm
constrictor may be the cause of this larger discrepancy between the numerical
solutions and the experimental data for the 0.635-cm constrictor.
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Arc-column characteristics were predicted within the accuracy with which
the transport properties are known. The accuracy with which the theoretical
model used in the numerical calculations represents the physical arc column
cannot be determined from the above comparisons because of the uncertainties
in the theoretical transport properties.

STUDY OF ARC CHARACTERISTICS WITH THE NUMERICAL PROGRAM

The qualitative picture of the arc given by the numerical calculations
(e.g., see fig. 10) shows that most of the gas is forced to the constrictor
wall near the constrictor entrance; as the gas proceeds downstream, it is
slowly ingested into the hot core of the arc (fig. 10(b)). The hottest region
is near the constrictor entrance (fig. 10(a)). The energy flux densities
(fig. 10(c)) are highest at the constrictor exit rather than in the hot region
near the entrance because near the entrance, most of the gas flows close to
the cold wall rather than through the hot region. The radial velocity pro-
files (fig. 10(d)) are approximately parabolic, similar to Poiseuille flow.
(The velocity gradients are caused mainly by large density gradients rather
than by viscous forces for this case. The effects of viscosity are illus-
trated later in this section.) The distribution of momentum flux (fig. 10(e))
illustrates that near the constrictor inlet, momentum is convected to the
constrictor walls causing the "ears" on the momentum flux profiles near the
constrictor inlet. Farther downstream, as the gas is ingested into the arc
core, the momentum is convected radially inward, causing high momentum flux
in the center of the arc. (The ears downstream appear to be caused by large
variations in gas viscosity since they disappear when the viscosity is set
equal to zero.)

A comparison of the analytical model of reference 1 with the numerical
solutions indicates that many of the lmportant qualitative trends to the con-
stricted arc are predicted by the analytical model of reference 1 whenever
the conduction heat losses are dominant. For example, figures 11(f)-(h)
illustrate that the analytical theory gives a falr estimate of the enthalpy
et the constrictor exit (i.e., at z/zo = 0.1) and figures 11(i) and (J)
illustrate that the theory gives the approximate values for the voltage gra-
dient and wall heat transfer rate throughout the constrictor.

For pressures over 1 atm within The 1.27-cm-diameter constrictor or for
larger constrictors at atmospheric pressure, the radiation losses are dominant
and the more complete numerical calculations are required for reasonable pre-
dictions of the constricted arc behavior. Figures 10(h) and 10(j) illustrate
that the theory of reference 1 predicts a higher mass average enthalpy and
lower wall heat transfer rate than obtained from experimental measurements or
from the numerical calculations for a case wherein radiation losses are large
compared to conduction losses.

The effects of various approximations in the theoretical model are
illustrated in appendix A. A more complete discussion of these approximations
and a comparison of the numerical solutions with several other theoretical
models that contain different approximations are given in reference 7.
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The following additional arc characteristics were investigated with the
numerical program:

1. The effect of asymmetries at the inlet of the counstrictor.

2, The effect of radiation heat losses on the characteristics of the
constricted thermal arc.

3. The importance of viscous forces on the constricted thermal arc.

i, The effect of radial convection within the constricted-arc column,
including effects of transpiration-cooled constrictors.

5. Behavior of the constricted arc at large dimensionless length.

The numerical solutions obtained for these studies are illustrated in fig-
ures 21 through 36. Since the reader may wish to make many comparisons
between the solutions in addition to those specifically mentioned herein, the
solutions are presented completely and uniformly rather than for specific
comparisons only. The solution of the simplified model in reference 1 is
also included in parts (f) through (j) of these figures.

Results of these studies are as follows:

1. Any asymmetry that may be imposed on the arc at the constrictor
inlet decays to a negligible value within a constrictor length equal to one-
tenth the characteristic length, zy, as shown in figure 36.

2. The major effect of large radiation losses is to lower and flatten
the enthalpy distribution (cf. figures 21-23 that are cases with negligible,
moderate, and large ratios of radiation losses to conduction losses) .

Note that the radiation does not appear to change the characteristic
length greatly for the arc to approach an asymptotic state wherein the mass
average enthalpy does not change with axial distance. The theory of refer-
ence 1 predicts that the mass average enthalpy will approach 80 percent of
the asymptotic value at z/zo = 0.1. The solution in figure 23 indicates
that the same may be true for arcs with high radiation. This result illus-
trates that the spreading of the arc to the constrictor wall is due to thermal
conduction; therefore, the theoretical characteristic length given in refer-
ence 2 that has been modified to reflect a large dependence on radiation
losses (modified length = zy times fraction of heat losses due to thermal
conduction) may underestimate the characteristic length considerably. From
this modified characteristic length one would have predicted that the mass
average enthalpy would have approached 80 percent of the final value at z/zo
less than 0.03 for the case shown in figure 23.

3. The viscous forces are negligible compared to inertia forces in
plasma generators of the size and with the gas flows normally used in wind
tunnels (constrictor diameters over 1 cm and mass flows over 1/2 g/s). A
comparison of figures 24 and 25 shows that neglecting the viscous forces in
the numerical calculations does not change the solution appreciably. Further-
more, when the viscous forces are negligible, the pressure drop through an
aerodynamically choked constrictor is approximately half the inlet pressure.

13



For smaller diameter constrictors at lower flow rates, viscous forces
tend to flatten the velocity profiles. Figures 26 and 27 illustrate the
effect of viscosity in a 0.635-cm-diameter constrictor with a mass flow of
only 0.227 g/s.

4. The radial heat conduction is large compared to radial heat convec-
tion within constricted arcs longer than 0.1z, (cf. figs. 28 and 29 that
show the numerical calculations with and without the radial heat convection).
The solutions of the constricted arcs with part of the gas transpired through
the constrictor wall do not differ appreciably from the solutions for the arcs
where all of the gas enters at the constrictor inlet (provided the total gas
flow rate is the same for both cases), even at flow rates sufficiently large
that radial convection is appreciable. Anderson (ref. 13) showed that radial
convection can be made equal to radial conduction for gas flow rates greater
than EOnk/c times the constrictor length (or equivalently, with flow rates
such that the constrictor length is less than 0.0Szo). Figures 30 through 33
show that the enthalpy and energy flux at the constrictor exit are nearly the
same in hydrogen or nitrogen arcs whether the gas is transpired through the
walls or put in at the constrictor inlet. When all the gas enters at the con-
strictor inlet, it rapidly spreads to the wall and then gradually returns
toward the axis with a radial flow similar to the radial flow within the
transpiration cooled constrictor.

5. The enthalpy, mass flow,and energy flux distributions approach
asymptotic values at large dimensionless lengths, but the velocity and momen-
tum distributions continually increase in magnitude with length as shown in
figure 3L.

PREDICTIONS OF CONSTRICTED-ARC PLASMA GENERATOR PERFORMANCE

The numerical calculations indicate that the constricted arc may be used
to produce gas flows with high energy flux density, with high enthalpy, and
with high velocity. Figure 37 illustrates that an energy flux density of
2600 kW/cm2 may be obtained with hydrogen with a 0.635-cm-diameter constrictor
that experiences a maximum wall heat transfer rate of only 2.4 kW/cm2, and
figure 38 illustrates that an energy flux density of 1400 kW/cm® may be
obtained with nitrogen in a 0.635-cm-diameter constrictor that experiences a
maximum wall heat transfer rate of 8 kW/cmZ. Figure 39 illustrates that with
nitrogen, enthalpies over 5%108 J/kg and velocities in excess of 9000 m/s may
be obtainable at the constrictor exit. (Note that the velocity at the exit is
approximately sonic. A simple estimate of the exit velocity can be made from
the enthalpy by noting that for nitrogen the sonic velocity 1is approximately
equal to (0.1h4 times enthalpy)l/2 for enthalpies over 2x107 J/kg as shown in
fig. b0.) The velocity at the exit of the divergent section of a plasma gen-
erator such as shown in figure 1 should be more than twice as high as the
velocity at the constrictor exit. Even if the gas were frozen and monatomic,
the velocity at the nozzle exit would be nearly twice the velocity at the
throat; and if the gas were not frozen or not monatomic, the velocity would
be greater. Therefore, velocities in excess of 18,000 m/s may be obtainable
at the nozzle exit.
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The energy flux density, enthalpy, and velocity given above cannot be
obtained simultaneously; the conditions were chosen to optimize either the
energy flux density or the enthalpy and velocity. (The methods to optimize
the constrictor design to obtain the specific arc features are discussed in
the next section.) Theoretical estimates of a more complete 1list of plasma
properties that may be obtained simultaneously with a constricted-arc plasma
generator similar to the one shown in figure 1 are given in table III for a
single set of operating conditions. The theoretical estimates were based on
a numerical solution for the constricted arc in the constant area portion of
the constrictor; this numerical solution is shown in figure Ul.

This table illustrates that the constricted arc should be capable of
producing plasmas that interact appreciably with magnetic fields as required
for experiments in magnetoplasmadynamics.

Some interesting arc-column properties for a variety of operating
conditions are shown in table II.

DESIGN OPTIMIZATION OF CONSTRICTED-ARC PLASMA GENERATORS

There is no constrictor size that is simultaneously optimum for all of
the desirable performance characteristics of the constricted-arc plasma gen-
erators, but the constrictor size, operating pressure, and current can be
chosen to optimize any single performance characteristics.

The features most often desired for these plasma generators are:

(a) High enthalpy

(b) High velocity

(c) Broad uniform plasma stream for testing

(d) High energy flux density

(e) High electron density

(f) High efficiency
The limitations for obtaining the above features are the current that can be
carried by the electrodes, the heat transfer rate that can be accommodated by
the constrictor walls, and the voltage gradient that can be supported by the
constrictor insulation.

Any single characteristic above can be improved, and simultaneocusly some
of the other performance characteristics reduced, if the constrictor size,

the operating pressure, and the current are modified as follows:

(a) High enthalpy

15



Maximum enthalpy can be achieved by operating with the maximum current
that the electrodes can carry at a pressure sufficiently low that the radia-
tion losses are negligible. The constrictor diameter should be Jjust small
enough that the heat transfer rate to the constrictor wall is the maximum that
the wall can accommodate. (In the conduction dominant regime, the enthalpy is
approximately proportional to I/R, as shown in ref. 1l.) TFurthermore, the
maximum local enthalpy occurs on the center line near the cathode, so for
maximum enthalpy, the constrictor length should be short.

(v) High velocity

The highest velocities at the constrictor exit can be obtained with
aerodynamically choked constrictors that produce the highest enthalpies; so
the optimization given above for high enthalpy also applies to high velocity.

(¢) Broad, uniform plasma stream for testing

The uniform portion of the test stream can be increased by increasing
the pressure until the radiation losses flatten the profile (cf. figs. L4l1(a)
and 42(a)) and by lengthening the constrictor until the enthalpy profile
becomes asymptotic. The diameter of the constrictor should be Jjust large
enough that the heat transfer rate to the wall is the maximum that the con-
strictor wall can accommodate. (In the regime whereln radiation losses are
dominant the wall heat transfer rate increases with increasing diameter.)
The current should be sufficiently great to heat the gas to a temperature that
will produce high radiation; that is, to approximately 15, 000° K (see
figs. 2(q) and 2(w)). Too high a current heats the gas in the center of the
arc to a temperature sufficiently high that the radiation losses decrease
with increasing temperature, and, despite high pressures, causes peaking in
the enthalpy profile as shown in figure A43.

(d) High energy flux density

The energy flux density can be increased by decreasing the constrictor
diameter, increasing the constrictor length until an asymptotic profile is
obtained, and increasing the pressure. The current should be just high
enough that the heat transfer rate to the constrictor wall is the maximum that
the wall can accommodate. Higher energy fluxes can be obtained with the
lighter gases because they radiate the least. (Compare the two cases shown
in figs. 37 and 38 wherein the energy flux density with hydrogen is approxi-
mately twice that with nitrogen, even though the heat transfer rate to the
constrictor wall for the nitrogen is greater than that with the hydrogen.)

(e) High electron densities

The number density of electrons can be increased by decreasing the
diameter and increasing the length until the profile becomes asymptotic. The
current should be just high enough that the enthalpy of the gas is that for
which the maximum electron density occurs at constant pressure, and the pres-
sure should be just high enough that the wall heat transfer rate is the
maximum that the wall can accommodate.
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(f) Efficiency

The efficiency can be increased by operating at low pressure with short
constrictors. At low pressure, the efficiency is not strongly influenced by
either the constrictor diameter or by the current. If high pressure operation
is mandatory, then for some cases, contrary to all of the simplified theories,
the efficiency may be improved while maintaining the same mass average
enthalpy at the exit by lengthening the constrictor and reducing the current.
(Compare figs. L2 and 4l that illustrate that the efficiency was increased
from 35 to 37 percent by increasing the length and decreasing the current
while maintaining the same mass average enthalpy at the exit.)

CONCLUS IONS

The equations that govern the energy and mass transport in the con-
stricted arc have been solved numerically. The numerical program uses real
equilibrium gas properties and solves simultaneously the energy, momentum,
and continuity equations. Axial conduction, radial pressure gradients, and
radial voltage gradients are neglected. From given initial and boundary con-
ditions the numerical program solves for the local state properties and
velocity of the gas within the constricted thermal arc. JFrom these properties
all other characteristics of interest (i.e., voltage gradient and wall heat
transfer rates) can be obtained. These solutions give sufficient detail to
evaluate other approximate solutions, and the computing time (approximately
2 min) is sufficiently short that the programs may be used directly to obtain
design criteria for plasma generators.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., 94035, Oct. 13, 1966
129-01-02-01-00-21
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APPENDIX A

NUMERICAL SOLUTIONS FOR EVALUATING APPROXIMATIONS OF THE

SIMPLIFIED THEORETICAL MODELS OF THE CONSTRICTED ARC

19



02

pu/(m/A)

puh/h_ (m/A)

//};\b " ('I'; ';‘; 7
J ‘\\ﬂ\l“\\‘\\\“ e c"l" ()

| e
A
he L

/}\\\{\\\\\\\

-0 © 0 (e) Momentum flux.
r/R
e = 2.25x10% J/kg
m/a= 174 kg/sm?
1= 693 A hmrh/A=3.85x|0: W/m?
= 00216 ko/s ho= 1.50%10* m/s
R= 00635 m o=  9.65%I10* N/m?(.952 atm)
2,:214 m Ho=  9.76X107 J/kg
Ee® 819 V/m
9™ 1.42x10" W/m?

(c) Energy flux density.

Figure Al.- The complete numerical solution without the simplifying approximations.



TS

~— ~— Theory (ref. )
Numerical calculations

Hen/Heoo
'S

| | I J
0 02 .04 06 .08 10 A2

2/2,

(h) Mass-average enthalpy.

Figure Al

.6 —
[o]
<
a '4 —_
.2{»
| | | I |
0 02 04 .06 .08 .10 2

. - Concluded.

2/2,

(k) Pressure.




\\\

(a) Enthalpy.

il
l.w,}

|
8 /\\‘
4 )!
o =\

i

""“"o'f'""
\m.t‘




€2

Hm/He

-~ ~—— — Theory (ref. 1)

Numerical caiculations

| | | | | }

.02 .04 .06 .08 .10 12
2/z

(f) Mass-average enthalpy.

Figure A2.- Concluded.

02 .04 .06 .08
2/2,

(h) Local heat transfer rate.




12

- - N

pu/{m/A)
O o wo

puh/hg, (M /A)
O—-—Nwhdoo

= =
== =2
S
=S
o

===
———
e et
S

: 6 /

(c) Energy flux density.

(e) Momentum flux.

2.25x%10% y/kg

n/A= 1T kg/sm?
he /A = 3.85x10° W/m?
= L50X10% m/s

9.65x10* N/m?(.952 atm)
9.76x107 J/kg
819 V/m
L42x107  W/m?

Figure A3.- Numerical solubion with the approximation that the radiance is zero.




e

o

Hs/Ho,

0 | | | 1 J

.0

.8

6

4

.2

0 | 1 ] J
(g) Space-average enthalpy.

8-

6

4 — —— Theory (ref. 1)

2 Numerical caiculations

| | ] J
0 .02 04 .06 .08 10

2/z,

(h) Mass-average enthalpy.

P/Po

Figure A3.- Concluded.

(3) Local heat transfer rate.

2/z,

(k) Pressure.




92

pu/({m/A)

puh/h, (m/A)

(d) Velocity.

r/R (e) Momentum flux.
heo = 2.25x10% J/kg
m/A= 7. kg/sm?
h/A = 9 2
I- 693 A he /A = 3.85%10° W/m

~he = L5OXIO* m/s

m=.00216 kg/s
R: 00635 m Po* 9.65x10* N/m?(.952 atm)
=214 m Ho=  9.76XI07 J/kg

Ew= 819 V/m

Qe = 1.42x10"  w/m?

r/R (c) Energy flux density,

Figure AlL.- Numerical solution with the idealized gas of reference 1.




L2

1.4
1.2
1.0

hg /e
\

| |

oM P O
AN

1.0
.8
L .6
~
< 4
.2
0 ] 1 | L |
(g) Space-average enthalpy
N
6 -
S-
£ 4-
<
£.3-/
—— — Theory {ref. 1)
2 Numerical calculations
N
| | | i | J
0 .02 .04 .06 .08 10 12

2/z,

(h) Mass-average enthalpy.

P/Po

M P ® O

Figure AlL.- Concluded.

Ar
| | | J

(3) Local heat transfer rate,

| ! I | | |

02 04 06 08 U0 2
2/24

(k) Pressure.

[ §




pu/(m/A)

o
T T T T T T T

i
‘\\\““ AKX
m‘h"nv'{& '
e /"e‘aw:«:‘::':zzzo:o:ozz«a:»
i ‘H‘ \‘Q&’A"" “‘

J
|l W
v
; |
2
0 (b) Mass flow.

puh/hg (m/A)

=
| —=

(a) Enthalpy.

.=

r/R (¢) Energy flux density.

Figure A5.- Numerical solution with the assumption that the initial enthalpy distribution is a

Bessel function.

-0 O
r/R
I=693 A
m=.00216 kg/s
R=.00635 m
25=2.14 m

(e) Momentum flux.

2.25x108

= 7.l
= 3,85x10°
= 1.50x10%

9.65x10%
9.76x%107
819

.42x107

J/kg

kg/sm?

W/m?

m/s
N/m?(.952 atm)
J/kg

V/m

w/m?



62

— e — ——

1.2
1.0

q/q,,

o N P O

8r
6 g

. o
4k 4

- / — —— Theory (ref. 1) -
2 Z Numerical calculations 2

| I I | | 1 | | | | | | | J
0] 02 04 06 08 .10 12 .4 0 02 04 06 08 .0 .2 .4
2/2g 2/2g

(h) Mass-average enthalpy. (k) Pressure.

Figure A5.- Concluded.




o€

puh/h, (m/A)

(a) Enthalpy. (b) Mass flow. (¢) Energy flux density.

he = 2.25%10° J/kg

m/A= 7. kg/sm?
I=693 A he /A = 3.85x10° W/m?
=002 kgrs VM= LSOXIO* mss
R= 00635 m Po = 9.65x10* N/m2(.952 atm)
=214 m Ho=  9.76X107 J/kg

Ep= 8i9 V/m

1.42x107 w/m?

o
8

Figure A6. - The simplified theoretical model of reference 1. (This model contains all of the
approximations in figures A2 through A5.)



a3

NN 0 A A N OO OO YOO O ORI NN NN 0 ORI N R0 N INE O] e i | |

¢

0 I J ] | | | ] ] |

(e) Space-average enthalpy.

A
! | | | | ! ! [ Al

8
< 4
£ Theory (ref. 1) and
T numerical calculations
2
| ] | | | ] ] | | |
0 .02 .04 .06 .08 10

2/z,

(f) Mass-average enthalpy.

Figure A6. - Concluded.

.02 .04 .06 .08 10

2/2,

(h) Local heat transfer rate.




A

(d) Velocity.
(a) Enthalpy.

7 =

[\

pu/(i/A)
(o]

(b) Mass flow.

r/R (e) Momentum flux.
ho=  2.25%10° J/kg
m/A= 17 kg/sm?
he, M/A =3.85x10°  W/m?
I=693 A e M ? m
. oz 150%10* m/s
ME.00216  ko/s = 9.65%10° N/m2(.952 atm)
< R=.00635 m Po® - m°(.952 atm
£ Ho= 976107 J/kg
€ 2,214 m
8 Ee:  8I9 V/m
< Q= L42x107  w/m?
=
=2
Q.

/R (c) Energy flux density.

Figure AT7.- The model of reference 1 without the approximation that the mass-flow density is constant.



I - I 1 { |

I8 1 | I I ]

8.
I
S
£
.
o-5—
— — Theory (ref. 1) S
.2 Numerical calculations a4
' 2
] l | 1 | | ] | L | 1
0 02 .04 06 .08 10 42 0 .02 .04 .06 .08 10
2/2, 2/2q

(h) Mass-average enthalpy.

Figure AT.- Concluded.

€€

(k) Pressure.




He




Ge

E/E,

- —— — Theory (ref 1)

Numerical calculations

| | | | | | | | [ | ]

02 04 .06 .08 10
2/z,

(f) Mass-average enthalpy.

Figure A8.- Concluded.

( \
1 | i | | 1 | ] |

J

(g) Voltage gradient.

| !

e

/]

02 04 .06 .08
z/z4

(h) Local heat transfer rate.

A0



g€




| I

|

0 02 04 .06 08 .10 J2
z/z,
0 | | | 1
(h) Local heat transfer rate.
(e) Space-average enthalpy.
1.0-
.8~
£.6
~
:I:E.4 — — Theory (ref. 1)
Numerical calculations
.2
| 1 1 1 )
0 .02 .04 06 .08 10 J2
z/z,

(f) Mass-average enthalpy.
Figure AQ.~ Concluded.

LE




38




APPENDIX B

FORTRAN PROGRAM FOR THE SOLUTION OF THE AXTISYMMETRIC CONSTRICTED ARC

WITH AN AXTAL FLOW OF GAS

This appendix contains the Fortran II programs for the numerical solution
of the axisymmetric constricted arc with an axial flow of gas. The data
required for input into these programs and a legend for the Fortran variables
is also included.

The function of each subroutine is described below.

BOUNDC provides for the specification of the boundary conditions for the
main program

STATEP evaluates the state properties (except density) for all of the
mesh points at each axial station

WDOT evaluates the density for all of the mesh points at each axial
station and calculates the mass flow rate by integration of the

mass flux over the constrictor cross-sectional area

ITER provides the iteration of pressure to obtain the correct mass flow
in the subsonic portion of the nozzle

ITERS provides the iteration of pressure to obtain the correct mass flow
in the supersonic portion of the nozzle

MOM calculates the velocity for all mesh points at the next axial
station from the momentum equation

ENERGY calculates the enthalpy for all mesh points at the next axial
station from the energy equation

ourPT prints and writes on magnetic tape the results of the main program
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INPUT DATA REQUIRED

Card number Data or Fortran variable Format
1 NFILE 14
2 NTAPE ik
3 KMAX 1l
4 KINC 1h
5 AMPS E10.3
6 WS E10.3
7 TRCL E10.3
8 P(1) E10.3
9 DIAM(1) E10.3
10 THETA E10.3
11 HWALL(1) E10.3
12 NMESH 14
13 FZ0 E10.3
14 EX E10.3
15 EXX E10.3
16 EPS E10.3
17 through 17 + N H(1) through H(NMESH) 5E10.3
18 + N through 18 + 2N U(1) through U(NMESH) 5E10.3

where
N = MOD[ (N\MESH - 1)/5]

These Fortran variables are described in the following legend under the
variables common to all of the programs or under the variables for program

number HTO702.

VARIABLES USED IN THE PROGRAMS FOR THE NUMERICAL SOLUTIONS OF THE
SYMMETRIC CONSTRICTED THERMAL ARC WITH AN AXTAL FLOW OF GAS

Variables Common to All Programs

Variable Name Description i

AMPS total current carried by the constrictor, A

DIAM diameter of the constrictor (an array), m

DTA diameter of the constrictor, m

DP pressure drop between axial stations, N/m?

DRTR square of the incremental radial distance, IR, m®

IR incremental radial distance, m

Dw discrepancy between the mass flow rate at this axial

station and the initial mass flow rate, kg/s
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Variable name o - _ Description )

Dz incremental axial distance, m

EPS maximum allowable relative discrepancy of the mass flow
rate

E axial voltage gradient, V/m

EX factor by which the axial incremental distance is increased

for the next axial station

EXX stebility factor that limits maximum size of DZ in order
to maintain stability

FZ0 length of the first axial increment divided by the
characteristic arc length, z,

HAVE space average of the enthalpy, %-IAh da, J/kg

HRAVE average energy density, %-IAph da, J/m?

H local enthalpy, J/kg

HWALL enthalpy of the gas at the constrictor wall, J/kg

KTINC number of axial stations between printout of results

KMAX maximum number of axial stations to be calculated

K axial station number

LOC number of iterations required to satisfy the continuity

equation (i.e., the number of iterations required such
that the flow rate at this axial station is sufficiently
near the initial flow rate)

L relative axial station number

M second relative axial station number

NCHOKE flag indicating that the flow is choked

NERR error flag for the gas property subroutines

NFILE file number on the magnetic tape used to store the
solutions

NK extra variable not used
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Variable name

NMESH

NNIN

NTAPE
PHT

PHIW

RCAP
RHOAV
RHO

RHOU

RROU

RUH
SIGMA
THETA

TRCL

VISC

L2

_ Description - - =

number of radial increments from the center line to the
constrictor wall

flag indicating this is the first iteration on pressure
drop (zero indicates first iteration, 1 indicates all
iterations thereafter)

magnetic tape on which the solution is stored

local thermal conductivity potential, W/m

thermal conductivity potential of the gas at the constric-
tor wall, W/m

static pressure at this axial station, N/m?

heat transfer rate to the constrictor wall that is due to
radiation, W

heat transfer rate to the constrictor wall that is due to
thermal conduction, W/m2

local radiation, W/m®
space average density, kg/m3
local density, kg/m°

local product of density and velocity at this station,
kg/sm?

local product of density times velocity at the previous
axial station, kg/sm®

local radius, m

total energy flux at this axial station, W/m®

local electrical conductivity, 1/Q-m

half-angle of divergence of the supersonic nozzle, deg

mass flux density of constrictor transpiration cooling,

kg /sm®
local velocity, m/s
local viscosity, Ns/m®

mass flow rate at the initial axial station, kg/s



Variable name

WW

Z

DZMAX

FNMESH

KC

NMESHP

NSS

PRAD

PRES

RUHA

THETAR

ZC

RHOA

Description

mass Tlow rate at this axial station, kg/s

axial distance of this axial station from the initial
axial station, m
Variables Local to Program HT -0701

upper limit of the axial increment distance (the incre-
mental axial distance is never allowed to exceed this

value in order to keep the solution stable), m

number of radial increments from the center line to the
constrictor wall (floating number)

axial station number at which aerodynamic choking occurs
index for the main loop within the program
radial index for the constrictor wall

index to indicate the axial stations for which the results
should be printed and stored

flag to indicate that the flow is supersonic

percentage of the heat flux to the constrictor wall at
this axial station that is due to radiation

local static pressure, atm

total heat transfer rate to the constrictor wall at this
axial station, W/m®

mass average energy at this axial station, %—f puh dA,
J/ke mA

half-angle of divergence of the supersonic nozzle, radians

axial distance from station 1 for which the flow chokes, m

Variables for Program HT-0702

scaling factor that changes the magnitude of the velocity
profile to obtain the desired initial flow rate

space average of the densily at this axial station, kg/m?
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Variable name

THETAR
WS

70

DHA

DHRA

DQR

DsSsS

FJ

NMESHP
PRES

RDR

RW

S5

SW

Ll

Description =

half-angle of divergence of the supersonic nozzle, radians
mass flow rate through the constrictor

characteristic arc length, zo5, m

Variables for Program HT-0703

incremental cross-sectional area, m?

product of the local enthalpy and the incremental area,
I /kg

product of the local enthalpy, the local density, and the
incremental area, J/m

product of the local radiation and the incremental area,
W/m

product of the local electrical conductivity and the
incremental area, m/Q

floating index for the radial position

running total of the product of the enthalpy and the area,
Jne [kg

running total of the product of enthalpy, density, and the
area, J/m

index for the radial position
radial index for the constrictor wall
local static pressure, atm

product of the local radius and incremental radial

distance, m®

dummy variable not used

running total of the product of electrical conductivity
and area, m/Q

electrical conductivity at the constrictor wall, 1/Q-m

viscosity at the constrictor wall, Ns/m®
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Variable name

DA

DRA

RDR

DDP

IND

DRUTP

DRUT

GA

GB

Variables Local to Program HT-O7OL

Description

incremental cross-sectional area, m®

product of the incremental cross-sectional area and the
local mass flux, kg/s

product of the incremental cross-sectional area and the
local energy flux, W

index for the radial incremental distance
local static pressure, atm
running sum of the mass flux, kg/s

product of the radius and the incremental radial distance,

m2

Variables Local to Programs HT-0705 and 0706

amount that the pressure drop is changed for each itera-
tion at this axial station, N/m®

flag used in adjusting the pressure drop during the itera-
tions at this station

index for the iterations

Variables Local to Program HI -0707

cross-sectional area of the previous station divided by
the cross-sectional area of this station

incremental cross-sectional area, m®

radial mass flux from this volume increment toward the
center of the column, kg/sm®

radial mass flux toward the center of the column into this
volume increment, kg/sm®

velocity of the gas associated with the radial mass flux,
TRUTP, m/s

velocity of the gas associated with the radial mass flux,
DRUT, m/s
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Variable name

NMESHP

RADCON

RCP1

RCP2

RCP3

RCPL

RDR

RUPREV

CL
DA

DRUTP

TRUT

FJ

GA

GB

L6

... .. Description i S
index for the radial incremental distance that designates
the constrictor wall

momentum convected radially into this volume increment,
kg/ms®

momentum convected radially into the volume element at the
previous axial station, kg/ms®

momentum convected radially into the volume increment two
axial stations ahead of this one, kg/ms®

momentum convected radially into the volume increment
three axial stations ahead of this one, kg/ms®

momentum convected radially into the volume increment four
axial stations ahead of this one, kg/ms®

product of the radius and the radial incremental distance,
2
m

local mass flux at the previous axial station, kg/sm®

viscous losses for this volume increment, N/m2

Variables Local to Program HT-0708

cross-sectional area of the previous station divided by
the cross-sectiocnal area of this station

conduction losses from this incremental volume, W/m3
2

incremental cross-sectional area, m

radial mass flux from this volume increment toward the
center of the column, kg/sm®

radial mass flux toward the center of the column into this
volume increment, kg/sm®

index for the radial incremental distance (floating)

energy of the gas associated with the radial mass flow,
DRUT, J/kg

energy of the gas associated with the radial mass flow,
DRUTP, J/kg

index for the radial incremental distance



Variable name

OoH

RADCON

RCP1

RCP2

RCP3

RCPL

RIR

RL
TH

TEP

PRAD

PRES

RUHA

ohmic heating within this volume element, W/m?

Description

energy convected radially into this volume increment,
kg/ms®

energy convected radially into the volume element at the
previous axial station, kg/ms®

energy convected radially into the volume increment two
axial stations previous to this one, kg/ms®

energy convected radially into the volume increment three
axial stations previous to this one, kg/ms®

energy convected radially into the volume increment four
axial stations previous to this one, kg/m52

product of the radius and the radial incremental distance,

m2

local radiation, W/m>
local kinetic energy (an array), J/ks

local kinetic energy, J/kg

Variables Local to Program HT-0709

percentage of the constrictor wall heat flux that is due
to radiation

local static pressure, atm
total heat transfer rate to the constrictor wall, W/u®

mass average energy at this axial station, L f puh dA,
T /ke YA
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CHTO0701 VAL WATSON DC ARC - AXTAL FLOW = REAL GAS =~ 2D

[aXal [aXa}

COMMON AMPSs DIAMs DIAs DPs DRDRs DRy DWs DZs EPSyY E
s EXs EXXs F20» HAVE®» HRAVEs Hs HWALL» K» KINCs KMAXs LOCy L
s Ms NCHOKEs NERRs NFILEs NKs NMESHs NNNy NTAPEs PHIy PHIW
s Py QRy Qs RCAPs RHOAVs RHO» RHOUs RROUs Ry RUH
SIGMAs THETAs TRCLs Us VISCs We WWy 2
DIMENSION DIAM(2000)s P{2000)» E{2000)y HWALL(2000)
1 ’ PHI(100)s SIGMA(100)s RCAP{100)s VISC{100}s RHOt100)
1 ’ R(100)s RHOU!{100})s RROU(100)
1 ’ H(29100)s U({2+100)
CALL CRISIS{ZZsAAIAMPS,2Z)
98 CONTINUE
NSS = 0

P

SET INITIAL CONDITIONS AND COMPUTE FIRST AXIAL STEP
CALL BOUNDC
FNMESH = NMESH

REWIND 8
MAIN LOOP FOR COMPUTING EACH AXIAL STEP
DO 6 Kl= 3 yKMAX
K = K +1
NN = NN = 1

MAINTAIN AXIAL STEP SIZE LESS THAN STEP S1ZE FOR INSTABILITY
DZMAX = ({DIAXDIA/440)*RHOU(2)¥H{M»2)/(PHI{2)*FNMESH*FNMESH) ) #EXX
IF(DZ~DZMAX) 40342342

40 DZ = EX%*DZ
42 CONTINUE
2 =12+ D2

START DIVERGENCE OF NOZZLE AFTER CHOKING
IF(NSS) 58958552
52 IF(Z~ZC) 58956456
56 DIAM(K) = DIAM(KC) +2e40%(Z=ZC)*TANF({THETAR)
58 CONTINUE
DIA = DIAM(K)
DR = DIA/(240#FLOATF{NMESH=~1)}
DRDR = DR#DR

INCREASE IN FLOW RATE FROM TRANSPIRATION COOLING
W= W + DZ%341416%DIA#TRCL

ALTERNATING STORAGE LOCATION FOR AXIAL STATIONS

- =X
n

= 1
= L + 1
{(3-L) 1s1s2




|

&

1 M =2
L=1
2 CONTINUE

[aXa)

EVALUATION OF THE ENTHALPY AT NEXT AXIAL STATION FROM ENERGY EQUATION
CALL ENERGY
C
C CHECK FOR SUPERSONIC OR SUBSONIC FLOW
IFINSS) 60360162

[ala!

CALCULATION OF VELOCITY AT NEXT STA THRU ITERATION = SUBSONIC FLOW
60 CALL ITER
GO TO 68
62 IF{Z=2C) 64366166
64 CALL ITER
GO TO 68

[a¥e!

CALCULATION OF VELOCITY AT NEXT STA THRU ITERATION = SUPERSONIC FLOW
66 CALL ITERS
68 CONTINUE

CHECK FOR CHOKED FLOW
IF CHOKED AND SUBSONICs START DIVERGING NOZZLE
1F CHOKED AND SUPERSONICs GIVE ERROR READING AND EXIT
IF(NCHOKE) 434370
70 IF(NSS) 7247253
72 NSS =1
KC =
ZC = Z = DZ/240
CALL SKIP(=14NTAPE)

[aNa¥aXa)

READ TAPE NTAPE, Ks DIAMIK)s Zy AMPSs E(K)»s WrQT sHWALL (K)
1 sPRADs NMESHs PRESsFZOsLOCHIEPSsDWs DPs DZ
2 » HAVEs RUHASHRAVE
P(K) = PRES#14013E5
READ TAPE NTAPEs (R({J)s HiMeJ)s UMypd)s RHOU(J) J=13NMESH)

NMESHP = NMESH + 1
U{(MyNMESHP) = 060 = U(MINMESH)
DO 73 J=1sNMESH
73 RROU(J)=RHOU(J)}
NN=KC=K
CALL SKIP(1ly NTAPE)
CALL STATEP
CALL WDOT
GO TO 6
3 WRITE OUTPUT TAPE 64 2024 Ks DWs U({Ms2)
GO TO 8
4 CONTINUE




CALL STATEP

06

c
C IF PRESSURE TOO LOW rOR GAS TABLESs EXIT
IFIPIK) = 0¢1ES) T43T74476
T4 CALL OUTPT
GO TO 8
76 CONTINUE

C
C WRITE OUT VALUES FOR EVERY (KINC)TH AXIAL STATION
IF{NN) 535146
5 NN = KINC
CALL OUTPT
6 CONTINUE
8 CONTINUE
REWIND NTAPE
202 FORMAT(1HOs 18HFLOW CHOKED AT K = s I4» 10Xy
1 20HFLOW RATE ERROR IS s 2PF12e7s 10H PERCENT
2 14 HCL VELOCITY = 3O0PFl0els 8H M/SEC )
. GO TO 98
END
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CHT0702 VAL WATSON SUBROUTINE BOUNDC FOR HT0720
SUBROUTINE BOUNDC
COMMON AMPSs DIAMs DIAs DPy DRDRs DRs DWs DZy EPSs E

1 » EX9s EXX9 FZ0s HAVEs HRAVE s Hs HWALLp Ky KINCs» KMAXy LOCy L
1 sy My NCHOKEs NERRy NFILEs NKy NMESHs NNNy NTAPEs» PHIy PHIW
1
1

s» Py QRy Qs RCAPs RHOAVs RHO» RHOUs RROU» Ry RUH
SIGMAs THETAs TRCLy Uy VISChy Wr WWy Z
DIMENSION DIAM(2000)s P(2000)s E(2000)s HWALL (2000}

’ PHI{100)s SIGMA{100)s RCAP(100)s VISC(100)» RHO(100)

1
1 ’ R(100)s» RHOU(100}s RROU(100)
1 s H(29100) UL25100)

CALL CRISIS (ZZsAA )

(2 XA

SET UP MAGNETIC TAPES
READ INPUT TAPE 5y 100s NFILE s NTAPE
CALL LOCATE(NFILEZNTAPE)

SET MAX ALLOWABLE AXIAL STATIONS AND INTERVAL BETWEEN PRINTOUT
READ INPUT TAPE 5» 100s KMAXs KINC

[aXa} (a2l e

SET INITIAL VALUES OF CURRENTs FLOW RATESs AND PRESSURE
READ INPUT TAPE 5y 101y AMPSy WSs TRCLy P(1)
P{1) = P{1)%14,013E5

SET UP THE DIA AS A FUNCTION OF AXIAL DIST
DIAMETER IS CONSTANT IN THIS CASE
{THETA IS THE HALF ANGLE OF DIVERGENCE AFTER CHOKING OCCURS)
READ INPUT TAPE 5s 101y DIAM(1}
DO 300 ID = 2yKMAX
300 DIAM{ID) = DIAM(1)
READ INPUT TAPE 55 101y THETA
THETAR = THETA#240%341416/36040

OO0

[aNa¥s!

SET THE WALL TEMP EQUAL TO A FUNCTION OF AXIAL DISTANCE
WALL TEMP IS CONSTANT IN THIS CASE
READ INPUT TAPE 5s 101s HWALL(1)
DO 400 IW = 2sKMAX
400 HWALL{IW) = HWALL(1)

[a¥aXal

SET THE RADIAL MESH SIZEs THE RELATIVE AXTAL INCREMENT SIZESs
THE STABILITY FACTOR(RATIO OF MESH SIZES)s AND THE FLOW
READ INPUT TAPE 5+100» NMESH
READ INPUT TAPE 5y 101s FZ0y» EXs EXXs EPS

C SET THE INITIAL ENTHALPY AND VELOCITY RADIAL PROFILES AT FIRST
READ INPUT TAPE 59102y (H(lsJ)s J=1pNMESH)
READ INPUT TAPE 55102 {(U{lsJ)s J=1»NMESH)

RATE ACCURACY

STATION




iy

€¢

[aNa)

EVALUATE THE REMAINING PROPERTIES AT THE FIRST AXIAL STATION
K =1
DIA = DIAMIK)
DR = DIA/(240%FLOATF(NMESH=1)}
DRDR = DR#DR
L =1
M 1
z 040
CALL STATEP
CALL WDOT

LI

C ADJUSTMENT FOR PROPER FLOW RATE
CWF = WS/ww
DO 2 J=1sNMESH
Ullsd) = CWF*U(1sJ)
2 Ul2yJ) = UllyJ)
CALL WDOT
Woa Wy

[aXa!

SET THE INITIAL AXIAL INCREMENTAL DISTANCE EQUAL TO FZO®CHARACTs LENGTH
20 = WHH{192)/(PHI{2)#341416)
DZ = FZ0%#20
CALL OUTPT
C
C CALCULATE THE PROPERTIES FOR THE SECOND AXIAL STATION
M= 2
K= 2
DIA = DIAMI(K)
DR = DIA/{240%#FLOATF(NMESH=1))
DRDR = DR#DR
DP = 0,0
P(K) = P{K=1) + DP
CALL ENERGY
RHOA = RHOAV
CALL WDOT
DP =W#y* (RHOAV=RHOA) /[ { (RHOA#341416*%DIA%DIA) /440 ) %%2)
CALL ITER
Z =727+ D2
CALL STATEP
CALL OUTPT
1C0 FORMAT(14)
101 FORMAT(E1043)
102 FORMAT(5E1043)
RETURN
END
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CHTO0703 VAL WATSON SUBROUTINE STATEP FOR HT0720
SUBROUTINE STATEP
COMMON AMPSs DIAMy DIAs DPs DRDRs DRy DWs DZy EPSs E
1 s EXs EXXs FZOs HAVEs HRAVEs Hy» HWALLs K KINC» KMAXy LOCy L
1 s My NCHOKEs NERRs NFILESs NKs NMESHs NNNs NTAPEs PHIs PHIW
1 sy P» QRy» Qs RCAPs RHOAVs RHOs RHOUs RROUs Rs RUH
1 y SIGMAs THETAs TRCLs Us VISCy We WWy 2
DIMENSION DIAM(2000)y P(2000)s E(2000)s HWALL(2000)
1 ’ PHTI(100)s SIGMA(100}s RCAP({100}s VISC(100)}s RHO(100)
1 ’ R{100})s RHOU(10O0)s RROU(100)
1 ’ H{2+4100)s U(29100)
CALL CRISIS {(ZZyAA )

C EVALUATION OF THE GAS PROPERTIES AT THE WALL TEMPERATURE
PRES = P({K)/1s013F5
CALL NTAB(PRESsHWALL(K)s PHIWs SWy RWs VWs 83 NERR)
NERR = NERR
HA = 040
$S = 040
HRA = 040
QR = 040
PO 30 J=1sNMESH
C
C EVALUATION OF THE GAS PROPERTIES AT EACH RADIAL STATION
CALL NTAB({PRESsH(MsJ) 9PHI{J)sSIGMALJI)sRCAP(J)sVISC(J)s 8s NERR)
NERR = NERR
IF (NERR} 1091040
10 CONTINUE
IF (J=1) 20930420

20 CONTINUE
FJd = J
R(J} = (FJ=145)%DR
RDR = R{J}#*DR
DA = 642832%RDR
DHA = DA%H{(MyJ)
DSS = DA¥SIGMA(J)

DHRA = DHA%RHO(J)
DQR = DA%#RCAP(J)
HA = HA + DHA
§S = 5SS + DSS
HRA = HRA + DHRA
QR = QR + D@R
30 CONTINUE
NMESHP = NMESH + 1
PHI{NMESHP ) = 2,0%PHIW = PHI{NMESH)
RINMESHP) = DIA/240
H(MsNMESHP ) = HWALL(K)




™

4

VISC(NMESHP) = 240%VW = VISC{NMESH)
C
C CALCULATICN OF THE VOLTAGE GRADIENTs AVE ENTHALPYs
E(KY = AMPS/SS
HAVE = HA/{36¢1416%DIA%¥DIA/440)
HRAVE= HRA/{341416%DIA%®DIA/440)
QR = QR/{(341416%DIA)
Q = 240%(PHI(NMESH) = PHIW)/DR
40 CONTINUE
RETURN
END

AND HEAT FLUXES
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CHTO0704 VAL WATSON SUBROUTINE WDOT FOR HT0720

SUBRQUTINE WDOT

COMMON AMPSs DIAMy DIA, DPs DRDRs DRy DWy DZy EPSy E

1 s EX9 EXX9 FZOs HAVEs HRAVEs Hs HWALLSY Ks» KINCs KMAXs LOC
1 s M9 NCHOKEs NERRs NFILEs NKy» NMESHs NNNs NTAPEs PHIy PHIW
1 s Py QRs Qs RCAPy RHOAVs RHO» RHOUs RROUs Rs RUH

1 s SIGMAs THETAs TRCLs Us VISCr Woe WWy 2

DIMENSION DIAM(2000)s P(2000)s E(2000}s HWALL(2000)

s
1 ’
1 )

PHI{100)s SIGMA{100)» RCAP{100)s VISC{100)» RHO({100)

R{100)s RHOU(100)s RROU(100)
H(2+100)s U({2s100)

CALL CRISIS {ZZsAA )
C
C EVALUATION OF THE FLOW RATE»s» AVERAGE DENSITYs AND ENERGY FLUX
WW = 040
RA = 0.0
RUH = 040

PRES = P({K}/1s013E5
DO 30 J=1yNMESH

CALL NRHO(PRESs H(MsJ)s RHOUlJ) s 84 NERR)
NERR = NERR

RHOU(J) = RHO(J)#U(MyJ)

20

30 CONTINUE
RHOAV
RETURN
END

IF{J=1) 20430520
CONTINUE

RDR = R{J)#DR

DA = 642832#RDR

WW = Ww + RHOU{J)*DA
DRA = DA¥RHO(J)

RA = RA + DRA

DRUH = DA¥H{MyJ)*¥RHOU(J)
RUH = RUH + DRUH

= RA/(301416%DIA%DIA/440)

L
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C
C ITE
C
C

dW! W e

15
20

05 VAL WATSON SUBROUTINE ITER FOR HT0720
SUBROUTINE ITER
COMMON AMPSs DIAMy DIAs DPs DRDRs DRy DWs DZs EPSs E
1 » EXs EXXs FZOs HAVEs HRAVE» Hy HWALLY Ko KINCs KMAXs LOCy L
1 » My NCHOKEs NERRs NFILEy NKy NMESHs NNNy NTAPEs PHIy PHIW
1 s Py QRs Qs RCAP» RHOAVH RHOs RHOUs RROU» Ry RUH
1 s SIGMAs THETAs TRCLs Us VISCs W WWy Z
DIMENSION DIAM{2000)s P{2000)s E{2000)y HWALL{2000)
1 ’ PHI(100)s SIGMA(100)s RCAP({100)s VISC(100)s RHO(100)
1 ’ R{100)s RHOU(100)s RROU(100)
1 ’ H(29100)y U(2+100)
CALL CRISIS (725AA )

RATION TO CALCULATE THE VELOCITY AT THE NEXT AXIAL STATION = SUBSONIC
VELOCITY IS FROM MOMENTUM EQUATION
ITERATE UNTIL THE MASS FLOW IS CONSERVED

IND = 0

NCHOKE = 0

DDP = DP

PIK) = P(K=1) + DP

LoC = 0

NNN = 0

DO 15 N=1950
LoC = N
CALL MOM
NNN = 1
CALL wWDOT

DW = (WW = W) /W
IF(ABSF(DW) = EPS} 2031l

IF(DW) 342049
IF(IND) 74715
DDP = DDP/240
DP = DP + DDP
P{K) = P(K=1) + DP
GO TO 15
DDP = DDP/240
DP = DP = DDP
P(K) = P{K=1) + DP
IND = 1
CONTINUE
NCHOKE = 1
CONTINUE
RETURN
END



g¢

CHT0706 VAL WATSON SUBROUTINE ITERS FOR HT0720
SUBROUTINE ITERS
COMMON AMPSs DIAMs DIAy DPs DRDRs DRy DWs DZy EPSy E
1 s EXs EXXs FZ0s HAVEs HRAVEs Hs HWALL9 Ky KINCs KMAXs LOCy L
1 s My NCHOKEs NERRs NFILEs NKs NMESHs NNNs NTAPEs PHI» PHIW
1 s Py QRs Qs RCAPy» RHOAV» RHO» RHOUs RROUs Rs RUH
1 s SIGMAs THETAs TRCLs Us VISCy We WWy 2
DIMENSION DIAM(2000)s P{2000}s E(2000)s HWALL(2000)}
’ PHI(100)s SIGMA(100)s RCAP{100)s VISCL100)s RHO({100)
’ R{100)s RHOU{100)s RROU{100)
’ H{2s100)y UL2100)
CALL CRISIS(ZZsAAA)

-

VELOCITY 1S FROM MOMENTUM EQUATION

C
C ITERATION TO CALCULATE THE VELOCITY AT THE NEXT AXIAL STATION = SUPERSONIC
C
C ITERATE UNTIL THE MASS FLOW IS CONSERVED

IND = 0

NCHOKE = 0

DDP = DP

P(K) = P{K=1} + DP

LoC = 0

NNN = 0

DO 15 N=11»30
LOC = N
CALL MOM
NNN = 1
CALL wDoT

DW = (WW = w)/W
IF{ABSF({DW) = EPS) 20191
IF(DW) 992043
IF{INDY 79795
DDP = DDP/240
DP = DP + DDP
P(K) = P{K=1) + DP
GO TO 158
9 DDP @ DDP/240
DP = DP « DDP
P{K) = P{K=1) + DP

~N Ut W =

IND = 1
15 CONTINUE
NCHOKE = 1
20 CONTINUE
RETURN

END



59



09

CHTO070

=

Il

C

7 VAL WATSON SUBROUTINE MOM FOR HT0720
SUBROUTINE MOM
COMMON AMPSs DIAMy DIAs DPs DRDRs DRy DWy DZy» EPSy E
s EX9 EXXs FZOs HAVEs HRAVEs Hs HWALLS K» KINCs KMAXs LOCy L
s My NCHOKEs NERRs NFILE) NKs NMESH» NNNs NTAPEs PHIy PHIW
y Py QRs Qs RCAPs RHOAVs RHO» RHOUy RROUs Ry RUH
SIGMAs THETA» TRCLs U VISCe We WWy 2
DIMENSION DIAM(2000)s P{2000)s E{2000}» HWALL(2000)
’ PHI(100)s SIGMA{100)s RCAP{100)s VISC(100)» RHO(100)
’ R{100)s RHOU(100)s RROU(100)
’ H{2+100)y U(29100)
RUPREV(100)s RCP1({100)s RCP2(100}s RCP3(100)» RCP4(100)
CALL CRIS1S (ZZsRUPREV)

C CALCULATE THE VELOCTIY AT THE NEXT AXIAL STATION

10

NMESHP = NMESH + 1
IF{NNN) 10910920
CONTINUE
DRUT = 040
U(LsNMESHP} = 040
AR = DIAM(K=1)*DIAM(K=1)/(DIAM(K)*DIAM(K)}
DO 30 J=2sNMESH
RUPREV (J) = RROU(J)
RROU{J) = RHOU(J)

C CORRECTION FOR RADIAL CONVECTION

62
64

66
68
70

72
T4

1

DRUTP = DRUT#R(J=1)/R(J)
DRUT & RROU(J) = RUPREVIJ)*AR + DRUTP
IFIDRUT) 64468966
GB = UlLsJ}
GO TO 68
GB = U(LsJ+1)
IF{DRUTP} 70474872
GA = UlLsJ=1)

GO TO 74
GA = U(LsJ)
CONTINUE

RADCON = DRUT%#GB - DRUTP#*GA
+ 1eO*U(LsJ)*{RUPREV(J)*AR = RROU(J))

C SMOOTHING THE RADIAL CONVECTION

40
42

RCP4(J) @ RCP3(J)

RCP3(J) = RCP2({J)
RCP2(J) = RCP1(J)
RCP1(J) = RADCON

IF{K = &) 42942430
CONTINUE
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RCP1{J) = 040
RCP2(J) = 000
RCP3(J) = 040
RCP4(J) = 00
RUPREV(J}) = RROU(J)

30 CONTINUE
UL s NMESHP)
U (Mo NMESHP)
20 CONTINUE
DO 50 J=2sNMESH
RDR = R{J)*DR
DA = 642832#RDR
VL = 040 ~ (140/RDR)*{

000 = U{LNMESH)
0e0

1 ((R{J+1) + R{JV)I/2401 % ({VISCII+]] + VISC(J))/Z.O)*
2 (LULLsJd+1) = UlL»J)I/DR)
3 =((R{J) + R{J=1))/240)%LLVISC(J} + VISClI=1))/240)%
4 {tUtLyd) = UlLsJ=1))/DR) )
. RADCON = 0425{RCP1(J) + RCP2(J) + RCP3(J} +RCP&4(J))
UiMsJd) = UlLsJd) = (DP + DZ*VL = RADCON)#*(RUPREVIJ)/
2 {RROU(J)%¥RROULJI}))

50 CONTINUE
UiMsl) = U(My2)
RETURN
END
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CHTO0708 VAL "WATSON

SUBROQUTINE ENERGY

COMMON AMPSs DIAMs DIA,
s EXy EXXo
sy My NCHOKEs NERR)Y

s

SIGMAs THETAs TRCLs U

SUBROUTINE ENERGY FOR HT0720

DPs DRDRs DRy DWy DZs EPSs E

FZOs HAVEs HRAVEs Hs HWALLS Ky KINCy KMAXy LOCy L
NFILEs NKs NMESHs NNN9 NTAPEs PHIs PHIW
QRs Qs RCAP» RHOAVs RHOs RHOUs RROUs Rs RUH

VISCy Wy WWy Z

DIMENSION DIAM(2000)s P{2000)y E{2000)s HWALL{2000)

’
s
’
1]
L]

CALL

= 2 S s

DRUT
TE(2)

AR

U

PHI{100)s SIGMA(100}s RCAP(1CO}s VISCI100)s RHO(100)
R{100}s RHOU(100)s RROU(100)
H{2s100)s U(29100)

RCP1(100)s RCP2(100)s RCP3(100)y RCP4(100)

TE(100)

CRISIS (ZZsRCP1)

CALCULATE THE ENTHALPY AT THE NEXT AXIAL STATION
0s0

(M22)#U(M92)/240
DIAM(K=11%DIAMIK=1)/{DIAMIKI#DIAM(K) )

DO 40 J=29NMESH

cL

RL
OH

TE(J+1)

TEP

FJ
R{J)
RDR

J

(FJ=145)%DR
R{J)#*DR
DA 642832#RDR
0¢0 = ((PHI{J+1)
+ (PHI(J+1)
RCAP(J)
(E{K=1)#E(K=1)*STIGMA{J))
UiMeJ+1)*U(Mad+1)/240
UtLsd I*U{LsJd /240

=

= 240%PHI(J} + PHI(J-1))/DRDR
= PHI(J=1))/(240%RDR) )

CORRECTION FOR RADIAL CONVECTION

DRUTP = DRUT#*R(J=1)/R{J}

DRU
62
64

66
68
70

72
T4

2

T

IF({DRUT)

IF(DRUTP)

RHOU(J) = RROU(JI*#AR + DRUTP
64968966
GB H{LsJ)
GO TO 68

GB

+ TE(JY)

= H(LsJ+1) + TE{J+1)
70874372

GA H{LsJd=1) + TE(J=1)

GO TO 74

GA H(LyJ)

+ TE(Y)

CONTINUE
RADCON

DRUT#GB = DRUTP*GA
+ 1e0%H(LsJ)*¥(RROU{J)*AR = RHOU(J}}

SMOOTHING THE RADIAL CONVECTION
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20

22

1

40 CONTINUE

Hi{My1)
RETURN
END

RCP&LSY = RCP3(J)
RCP3(J) = RCP2(J}
RCP2(J) = RCP1(J)
RCP1(J) = RADCON
IF({K=4) 20320922
CONTINUE
RCPL{J) = 0e0
RCP2(J) = 040
RCP3{J) = 0e0
RCP4(J) = 040
RROU(J) = RHOU(J)
CONTINUE

H{Ms2)

RADCON = 0425(RCP1(J) + RCP2(J) + RCP3{J) +RCP4(J))
H{MsJ) = H(LsJ) + (DZ*(OH=CL=RL) + RADCON)#*(RROU(J}/
(RHOU (J}¥RHOU(J} 1))

+TEP = TE{J)
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1
1
1
1

1
1
1

1
2
1

1
300

NN NP RN W

299

NN NN

SUBROUTINE OUTPT

CHTD709 VAL WATSON SUBROUTINE OUTPT FOR HT0720

COMMON AMPSs DIAMs DIAs DPs DRDRs OR» DWs DZ

s EXs EXXy FZ0s HAVE>

s SIGMAs THETAs TRCL»

CALL CRISIS {ZZ+AA )
QT = Q+QR
RUHA RUH/Y
PRAD QR/QT %#10040
PRES P(K)/14013E5
WRITE TAPE NTAPES

s EPSy E

HRAVEy Hs HWALLs K» KINCs KMAXy LOCs L
» Ms NCHOKE9 NERRs NFILEs NKs NMESH® NN
s Py QRs Q» RCAPy RHOAVs RHOs RHOUs RRO
Us VISCs W WWs Z
DIMENSION DIAM(2000)s P{2000)s £(2000)» HWALL{2000}
’ PHI(100)s SIGMA{100}s RCAP(100)y VISC{100)s RHO{100}
’ R{100}s RHOU(100)s RROU(200}
’ H(2s100)s U{29100)

Ns NTAPEs PHIy PHIW
Us Ry RUH

Ks DIAMI{K)y» Zs AMPSy E(K})s WsQT sHWALL (K)

sPRADs NMESHs PRESsFZOsLOCIEPSsDWs DPy DZ
s HAVEs RUHASHRAVE
WRITE TAPE NTAPEs (R{J}s H{MsJ)s UiMedls RHOU(I) J=1NMESH)

END FILE NTAPE
WRITE OUTPUT TAPE 6+3003Ks

NFILEs EX

DIAM(K) s Z9AMPSHE(K) sW9QT s TRCL
WRITE QUTPUT TAPE 69299sPRADYHWALL{K) sPRESS

WRITE OQUTPUT TAPE 63 298y HAVES
WRITE OUTPUT TAPE 693018 (R{J)y HIMIJ)» UlMad)s RHOUTJ)
RIJ+25) s HIMsJ+25) 9 UlM9sJ+25)s RHOU(J+25)y J=1925 )

RUHA» HRAVE

FORMAT(1H1»
15HAXTAL STATION = s I4 ’ 16
50H DC THERMAL ARC WITH AXIAL GAS FLOW
15HDTAMETER = .9 E10e3s 10H
1Xs 15HAXTIAL DIST = s E1043s 10H
50Xs 15HCURRENT = y E10e3 10H
1Xs 15HVOLTAGE GRAD = y E10e3) 10H
50Xs 15HFLOW RATE = s E10e39 10H
1Xs 15HWALL HEAT FLUX= s E10e3s 22H W
38Xs 15HTRANS COOLING = s E10e3s 12H
FORMAT(1H
15HRADIATION LOSS= y FlOeds 10H
50Xs 15HWALL ENTHALPY = s E10e3 10H
1Xs 15HPRESSURE = sy FlOetby 10H
50Xs 15HNMESH = y 14/
1Xy 15HLOC = s 49 16Xy
50Xs 15HFZO = » E10e3 /
1Xs 15HOW = 9E1063910X
SO0X» 15HEPS = s E10e3 /
1Xs 15HFILE = » T14»66X915HEX

NMESHILOCsFZO9DWIEPSy

X

METERS
METERS
AMP S
VOLTS/M
KG/SEC
ATTS/M#%2 ’
KG/ SEC=M#1#2 )

N N

~N .

PERCENT ’
JOULES/KG /
ATMOS ’

= 9E1043)
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298
1
2
3

301

CUE U P W

FORMAT(1HO»
25HSPACE AVERAGE ENTHALPY = » E15a459
1Xs 25HMASS AVERAGE ENTHALPY = » E15459
1Xs 25HAVERAGE ENERGY DENSITY = » E15459
FORMAT(1HO0s 3Xs10H RADIUS $5X910H ENTHALPY
5Xs 10H VELOCITY 3 5Xs 10H MASS FLUX ’
S5X»10H RADIUS $5X910H ENTHALPY
5Xs 10H VELOCITY s 5X» 10H MASS FLUX /
1Xs 3Xe10H METERS 35Xs10H JOULES/KG
5Xs 10H M/S s 5Xs 10H KG/S M#x%2 ’
5Xs10H METERS $5X910H JOULES/KG

5X9s 10H M/S
{8{E1545)))
NFILE = NFILE + 1
RETURN
END

s 5X» 10H KG/S M#%2 /7

104 JOULES/KG

10H JOULES/KG

12H JOULES/M**3
’

/
/
)
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APPENDIX C

FORTRAN PROGRAM FOR THE SOLUTION OF THE ASYMMETRIC CONSTRICTED ARC

WITH AN AXTAL FLOW OF GAS

This appendix contains the Fortran II programs for the numerical solution
of the asymmetric constricted arc with an axial flow of gas. The data
required for input into these programs and a legend for the Fortran variables
are also included.

The function of each subroutine is described below.

BOUNDC

STATEP

WDOT

ENERGY

MOM

ITER

ouTPT

provides for the specification of the boundary conditions for the
main program

evaluates the state properties (except density) for all of the
mesh points at each axial station

evaluates the density for all mesh points at each axial station
and calculates the mass flow rate by integration of the mass

flux over the constrictor cross-sectional area

calculates the enthalpy for all mesh points at the next axial
station from the energy equation

calculates the velocity for all mesh points at the next axial
station from the momentum equation

provides the iteration of pressure to obtain the correct mass flow
in the subsonic portion of the nozzle

prints and writes on magnetic tape the results of the main program

A second main program entitled herein "Supersonic Continuation™ uses the
same subroutines to continue into the supersonic region of the nozzle with the
exception that the following subroutine replaces ITER.

ITERS

provides the iteration of pressure to obtain the correct mass flow
in the supersonic portion of the nozzle
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INPUT DATA REQUIRED

Card number Fortran variables Format
1 NMESH, NFILE, NTAPE, NK LT
2 CDIA E10.3
3 AMPS
iy P(1)
5 XX
6 CHWALL
7 FZ0
8 EPS
9 X \ 4
10 NCD Ih

11 through 11 + NCD J, I, #(1, J, T) 2Th, E10.3

These Fortran variables are described in the following legend under the
variables common to all programs or under the variables for program HI' O751.
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INPUT DATA REQUIRED FOR SUPERSONIC CONTINUATION

Card number Fortran variables Format
1 NFILE(1), NTAPE(1) 2Tk
2 NFILE, NTAPE, KMAX, KINC LTk
3 EX £10.3
n 70 E10.3
5 THETA B10.3

VARTABLES USED IN THE PROGRAMS FOR THE NUMERICAL SOLUTIONS OF THE
ASYMMETRIC CONSTRICTED THERMAT, ARC WITH AN AXTAL FLOW OF GAS

Variables Common to all Programs

Variable name S Description

AMPS total current carried by the constrictor, A

DIAM diameter of the constrictor (an array), m

DTIA diameter of the constrictor, m

Dp pressure drop between axial stations, N/m?

DW discrepancy between the mass flow rate at this axial

station and the initial mass flow rate, kg/s

Dz incremental axial distance, m

EPS maximum allowable relative discrepancy of the mass flow
rate

E axial voltage gradient, V/m

EX factor by which the axial incremental distance is increased

for the next axial station

EXX mass flow rate at the initial axial station, kg/s
FZ0 length of the first axial increment divided by the
characteristic arc length, zg

H local enthalpy, J/kg
HWALL enthalpy of the gas at the constrictor wall, J/kg
X axial station number
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Variable name

Loc

NCHOKE

NFILE

NMESH

NTAPE
PHT

PHIW

RCAP
RHOAV
RHO

RHOU

SIGMA

70

Description

number of iterations required to satisfy the continuity
equation (i.e., the number of iterations required such
that the flow rate at this axial station is sufficiently
near the initial flow rate)

relative axial station number

second relative axial station number

- flag indicating that the flow is choked

file number on the magnetic tape used to store the solutions
maximum number of axial stations to be calculated

number of radial increments from the center line to the
constrictor wall

flag indicating that this is the first iteration on pres-
sure drop (zero indicates first iteration, 1 indicates
all iterations thereafter)

magnetic tape on which the solution is stored

local thermal conductivity potential, W/m

thermal conductivity potential of the gas at the constrictor
wall, W/m

static pressure at this axial station, N/m®

heat transfer rate to the constrictor wall that is due to
radiation, W/uf

heat transfer rate to the constrictor wall that is due to
thermal conduction, W/m®

local radiation, W/m®
space average density, kg/m?
local density, kg/mg

local product of density and velocity at this station,
kg/sm?

local electrical conductivity, 1/Q-m

local velocity, m/s




Variable name ) Description

VISC local viscosiﬁ&; Ns/m®

W mass flow rate at the initial axial station, kg/s

WW mass flow rate at this axial station, kg/s

Z axial distance of this axial station from the initial axial

station, m

Variables Local to Program HI -0750

Cwr scaling factor that changes the magnitude of the velocity
profile to obtain the desired initial flow rate

DZMAX upper limit of the axial incremental distance (the incre-
mental axial distance is never allowed to exceed this
value in order to keep the solution stable), m

RHOA space average of the density at this axial station, kg/m?

70 characteristic arc length, zq

Variables Local to Program HT-0751

CDTA constrictor wall diameter, m

CHWALL enthalpy of the gas at the constrictor wall, J/kg

FJ Tloating index for the radial position

FNI number of increments in the azimuthal direction (floating)

I index for the azimuthal position

J index for the radial position

NCD number of data cards used to specify the initial enthalpy
distribution

NT number of azimuthal increments

Variables Local to Program HT-0752

DA incremental cross-sectional area, m°
DRDR square of the incremental radial distance, DR, m

T1



Variable name

Description

TR
DTH
FJ

NI

RW

1]

SW

DA

DRDR

ITH
FJ

FNT

NT

T2

incremental radiéi'distance, m

incremental azimuthal distance, radians

floating index for the radial position

number of increments in the azimuthal direction (floating)
index for the azimuthal position

index for the radial position

error flag for the gas property subroutines

number of azimuthal increments

running total of the product of radiation and area, W/m
radial position, m

durmy variable not used

running total of the product of the electrical conductivity
and area, m/Q

durmy variable not used

Variables Local to Programs HT-0753 and O754

incremental cross-sectional area, m=

square of the incremental radial distance, IR, m=
incremental radial distgnce, m

incremental azimuthal distance, radians

floating index for the radial position

number of increments in the azimuthal direction (floating)
index for the azimuthal position

index for the radial position

error flag for the gas property subroutines

number of azimuthal increments

radial position, m



Variable name

Variables Local to Program HT -0755

CL

DA

DRDR

DR

DZRU

FJ

ICC

IC

MM

™

IPP

IP

NI

OH

PHTMM

PHIM

PHIO

Description

. s s 3
conduction losses from this incremental volume, W/m

incremental cross-sectional area, m®

square of the incremental radial distance, DR, m®
incremental radial distance, m

incremental azimuthal distance, radians

local DZ divided by the local RHOU, m®s/kg

index for the radial incremental distance (floating)
number of azimuthal increments

index for changing the number of azimuthal increments

second index for changing the number of azimuthal
increments

index for the previous azimuthal position

index for the azimuthal position at the previous radial
position

index for the next azimuthal position

index for the azimuthal position at the next radial
position

index for the azimuthal position

index for the radial position

number of azimuthal increments

ohmic heating within this volume element, W/m?

thermal conductivity potential at the previous radial
position, W/m

thermal conductivity potential at the previous azimuthal
position, W/m

thermal conductivity potential at this radial and
azimuthal position, W/m

3



Variable name
PHTPP

PHTP

RTR

RDTH2

RL

SLOPE

DRIR

IR

DZRU

FJ

ICC

Ic

M

™

TPP

1P

7h

Description

thermal conductivity potential at the next azimuthal
position, W/m

thermal conductivity potential at the next radial
position, W/m

product of the local radius and incremental radial distance,
2
m

square of the product of radius and incremental azimuthal
distance, m

radiation losses from this incremental volume, W/m8

radial position, m

gradient of the thermal conductivity potential at the wall,
W/m?

Variables Local to Program HT-0756

incremental cross-sectional ares, m=

square of the incremental radial distance, IR, e
incremental radial distance, m

incremental azimuthal distance, radians

local DZ divided by the local RHOU, m°s/kg

index for the radial incremental distance (floating)
number of azimuthal increments

index for changing the number of azimuthal increments

second index for changing the number of azimuthal
increments

index for the previous azimuthal position

index Tor the azimuthal position at the previous radial
position

index for the next azimuthal position

index for the azimuthal position at the next radial
position



Variable name

I

J

NI

RDR

RDTH?2

DDP

IND

Description

index for the azimuthal position
index for the radial position
number of azimuthal increments

product of the local radius and incremental radial
distance, i

square of the product of radius and incremental azimuthal
distance, m®

radial position, m

velocity at the previous azimuthal position, m/s
velocity at the previous radial position, m/s
velocity at this radial and azimuthal position, m/s
velocity at the next azimuthal position, m/s
velocity at the next radial position, m/s

viscous losses from this volume increment, N/m?
viscosity at the previous azimuthal position, Ns/m®
viscosity at the previous radial position, Ns/m®
viscosity at this radial and azimuthal position, Ns/m®
viscosity at the next azimuthal position, Ns/m®

viscosity at the next radial position, Ns/m®

Variables Local to Program HT -O757

amount that the pressure drop has changed for each
iteration at this axial station, N/m®

Tlag used in adjusting the pressure drop during the
iterations at this station

index for the iterations
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Variable name

[39)

NI

NI

PRAD

KINC

NFILEL

NI

NTAPEL

PX

THETAR
THETA

zC

DDP

76

Variables Local to Program HI-0758

Description

index for the radial position (floating)
number of azimuthal increments (floating)
index for the radial position
number of azimuthal increments

percentage of the constrictor wall heat flux that is due to
radiation

total heat transfer rate to the constrictor wall, W/m®

Variables Local to Program HI -0780
number of axial stations between printout of results
maximum number of axial stations to be calculated

magnetic tape file number indicating the last file of the
subsonic results

number of azimuthal increments
index for printing results
magnetic tape on which the subsonic results are stored

pressure at the last axial station of the subsonic flow
regime, N/m2

heat flux to the constrictor wall at the last axial station
of the subsonic regime, W/m?

half-angle of divergence of the supersonic nozzle, radians
half-angle of divergence of the supersonic nozzle, deg

axial position at choking, m

Variables Local to Program HT-0781

amount that pressure drop has changed for each iteration
at this axial station, N/m?




Variable name

Description

IND

flag used in adjusting the pressure drop during the
iterations at this station

index for the iterations

1
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CHTO0750 VAL WATSON DC ARC = AXIAL FLOW = REAL GAS
COMMON AMPSs Ws WWs DPs DZs EPSs FZO9s 29 Qs QR DWs DIAs EXs EXXo»
Hy PHIs SIGMAs RCAPs RHOs VISCs HWALLs RHOAVs RHOUs PHIW,
1 Py E9 DIAMy Uy
1 NMESHs Ks Ls Ms LOCs NFILEs NTAPEs NCHOKEs» NKs NNN
DIMENSION DIAM(1000)s P{1000)s F(1000)s HWALL(1000}
DIMENSION H(2s12948)s U(2912+48)s PHI(12948)s SIGMA(12+48)
1 RCAP(12948)y VISC(12948)9 RHO(12948)y RHOU(12948)
CALL CRISIS (ZZyAAAIAMPSs NNN)
CALL BOUNDC

K =1

DIA = DIAMI(K}
L =1

M= 1

Z = 040

CALL STATEP
CALL wDOT

CWF = EXX/WW
DO 20 J=19NMESH
DO 18 I=1s48

18 UlleJdsl) = CWF*UlleJsI)
20 CONTINUE
CALL WDOT
W = WW
20 = (W%311140)/361416
DZ = FZ0%#Z0

CALL RHOAVE
RHOA = RHOAV
CALL LOCATE (NFILEsNTAPE)
CALL OUTPT
M= 2
K = 2 -
DIA = DIAM({K)
DP = Q40
P{K) = P(K=-1) + DP
CALL ENERGY
CALL RHOAVE
DP =W#W* (RHOAV=RHOA) /( ( {RHOA#341416*¥DIA%DIA)/4e0)#%2)
CALL ITER
Z =27 + DZ
CALL STATEP
CALL OUTPT
DO 6 K = 33NK
DIA = DIAM{K)
DZMAX = Q42%DIAX*DIA#RHOU(391}%20040/(FLOATF{NMESH)*#FLOATF (NMESH))
IF(DZ=DZMAX) 40342442
40 DZ = DZ*EX



6L

42

202

CONTINUE
M=1
L=1L+1
IF(3=L) 1s1y2
M= 2
L =1
CONTINUE
CALL ENERGY
CALL ITER
IFINCHOKE) 49433
WRITE QUTPUT TAPE 69 2029 Ks DWeU(Mslsl)
GO TO 8
CONTINUE
CALL STATEP
Z =27+ D2
CALL OUTPT
CONTINUE
CONTINUE
REWIND NTAPE
REWIND 8
FORMAT(1HOs 18HFLOW CHOKED AT K = » I4s 10X»
1 20HFLOW RATE ERROR IS v 2PF1l2479 10H PERCENT
2 14 HCL VELOCITY = s0PF10e¢ls 8H M/SEC )
CALL EXIT
END




08

CHTO0751 VAL WATSON SUBROUTINE BOUNDC FOR HTO0750
SUBROUTINE BOUNDC
COMMON AMPSs Wy WWs DPs DZs EPSy FZ0s Z» Qs QR DWe DIAs EXy EXXos
1 He PHI» SIGMAs RCAPs RHOs VISCs» HWALLs RHOAVs RHOUs PHIW,
1 Ps Ev DIAMy Uy
1 NMESHs Ks Ls My 1LOCs NFILEs NTAPEs NCHOKEs NKs NNN
DIMENSION DIAM{1000)s P{1000)s E(1000)y HWALL(1000}
DIMENSION H(241248)s U(2912s48)s PHI{12+48)s SIGMA(12948)
1 RCAP(12948)s VISC(12948)s RHO(12948)9 RHOU(12948)
CALL CRISIS(ZZsAAA)
READ INPUT TAPE 54 999 NMESHs NFILEs NTAPEs NK
99 FORMAT(414)
READ INPUT TAPE 5+ 100s CDIAs AMPSs P{1)s EXXs CHWALLs FZOs EPSHEX
100 FORMAT(E1043)
P(1) = P(1)%1,013EK
DO 5 K = 1sNK
DIAM(K) = CDIA
HWALL{K) = CHWALL

5 CONTINUE
NI = 6 -
DO 10 J = 1sNMESH
DO 6 I = 1yNI?
H{lyJs1) = HWALLI(1)
6 UlleJsl) = 10040
FJ = J
FNI = NI
IF ((FNI/FJ)=440) 848410
8 NI = NI*2

10 CONTINUE

READ INPUT TAPE 59 102s NCDs {Js Is Hl1lsJsl)s K=19NCD }
102 FORMAT(I4/(2144E1043))

RETURN

END
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28

1o

12

CHTO0752 VAL WATSON SUBROUTINE STATEP FOR HT0750

SUBROUTINE STATEP
COMMON AMPSs Ws WWy DPs DZs EPSs FZOs» Zs Qs QR DWs DIAs EXy EXX»

1 Hsy PHIs SIGMAs RCAPs RHOs» VISCs HWALLs RHOAVs RHOUs PHIWS
1 Ps Es DIAMy Uy
1 NMESHs Ks Ls Ms LOCs NFILEs NTAPEs NCHOKEs NKp NNN

DIMENSION DIAM(1000)s P(1000)s E{1000)s HWALL(1000)
DIMENSION H(29s12948)s U(2912948)s PHI(12+48)s SIGMA(12948)

1 RCAP(12+48)s VISC(12s48)9 RHO{12948)9 RHOU{12948)
CALL CRISIS(ZZsAAA)
QR = QRR

PRES=P(K)/14013E5

CALL NTAB(PRESs HWALL(K)s PHIWs SWs RWs VISC{NMESH+191)s 89 NERR)
DR = DIA/(240%#FLOATF{NMESH} =140}

DRDR = DR¥*DR

R = 040
J=1
1 =1

CALL NTAB(PRESs H(MsJaI)y PHI(JeI)s SIGMAlJsI)»
1 RCAP(JsI)s VISC{JsI)y B8y NERR)
PHI(1s2) = PHI(1lsl)
PHI{193) = PHI{1s1)
VISC{1s2) = VISC{1lsl)
VISC(1s3) = VISC(1sl)
SS = SIGMA(JsI)#341416%DRDR¥0e25
QRR= RCAP(Js1)#341416%DRDR*0s25
NI = 6
DO 14 J = 29NMESH
R = R + DR
DTH = 642832/FLOATF{NI)
DA = R*DR*DTH
DO 10 I = 1sNI
CALL NTAB(P(K)s H{MsJsI)s PHItJaI)s SIGMA(Js1)y
1 RCAP(JsI)s VISC(JsI)s By NERR)
$S = SS + SIGMA(Js1)%DA
QRR= QRR+ RCAP(Js1}*DA

CONTINUE
FJ = J
FNI = NI
IF ((FNI/FJ) = 440) 12912914
NI = NI®2

14 CONTINUE

E(K} = AMPS/SS
QRR=QRR/ (34 1416%*DIA)
IF{NERR) 22922520

20 WRITE OUTPUT TAPE 6% 110y K
22 CONTINUE



€g

110 FORMAT(1HOs 24HEXCEEDED TABLES AT K = 4 14)
RETURN
END
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CHTO0753 VAL WATSON SUBRQUTINE WDOT FOR HT0750
SUBROUTINE wDOT
COMMON AMPSs We WWe DPs DZs EPSs FZOs Zs Qs QR DWs DIAs EXy EXX»
1 Hs PHIy SIGMAs RCAPs RHO» VISCy HWALL s RHOAVs RHOUs PHIWS
1 Py Ey DIAMy Uy
1 NMESHs Ks L9 Ms LOCs NFILEs NTAPEs NCHOKE» NK» NNN
DIMENSION DIAM(1000)s P{100N)s E{1000)s HWALL(1000)
DIMENSION H{2912448)y U(2912948)s PHI(12948)y SIGMA(12448)
1 RCAP(12548)y VISC({12+48)y RHO{12948)y RHOU{L12948)
CALL CRISIS{ZZsAAA)
DR = DIA/{240#FLOATF(NMESH)=140)
DRDR = DR¥*DR

R = 040

J=1

=1
PRES=P(K)/14013E5

CALL NRHO(PRESs H{MsJpI)s RHO(JsIly 8y NERR)
RHOULJsI) = RHO(JsINI®*U(MeJy I}
WW B RHOU(J»T1)1%#341416%¥DRDR*¥0425
NI = 6
DO 14 J = 23yNMESH
R =R + DR
DTH =2 642832/FLOATF(NI)
DA = R¥DR#DTH
DO 10 I = 1yNI
CALL NRHO(PRESY H(MsJsI)s RHO(JsI}y 89 NERR]
RHOU(Js 1) = RHO(Js 1) %U(MeJds 1)
WW =2 WW + RHOU(JsI)%DA

10 CONTINUE
FJ = J
ENI = NI
IF ({ENI/FJ) = 440) 12912414
12 NT = NI®2

14 CONTINUE
IF(NERR) 22922420

20 WRITE QUTPUT TAPE 6» 110, K

22 CONTINUE

110 FORMAT{1HOs 24HEXCEEDED TABLES AT K = 4 I4)
RETURN
END
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CHTO7?

10

12
14

20

110

54 VAL WATSON SUBOUTINE RHOAVE FOR HT0750
SUBROUTINE RHOAVE
COMMON AMPSs Ws WWe DPs DZs EPSs FZOs Zs Qs QRs DWs DIAs EXs EXX»

1 Hy PHIy SIGMAy RCAP» RHOs VISCs HWALLs RHOAVs RHOUy PHIWS
1 Py E9 DIAMy Uy
1 NMESHs Ko Ly My LOCs» NFILEs NTAPEs NCHOKE»» NKs NNN

DIMENSION DIAM(1000)s P{1000)s E(1000)s HWALL(1000)
DIMENSION H(2912948) U(2912948)s PHI(12948)s SIGMA(1248)
1 RCAP(12948)s VISC{12s48)9 RHO(12948)s RHOU(1Z948)
CALL CRISIS(ZZsAAA)
DR = DIA/{240%FLOATF(NMESH)=140)
DRDR = DR*DR

R = 040

J =1

I1 =1
PRES=P(K)/1s013E5

CALL NRHO(PRESy H{MsJsI)s RHO(JsI)s 8y NERR)
RHOAV = 341416#DRDR*0s25%#RHO(Js 1)

DO 14 J = 2sNMESH
R =R + DR
DTH = 642832/FLOATF(NI)
DA = R¥DR#DTH
DO 10 I = 1sNI
CALL NRHO(PRESs H(MsJsI)s RHO(JsI)s By NERR)
RHOAV = RHOAV +DA#RHO{Js1)
CONTINUE
FJ = J
FNI = NI
IF ((FNI/FJ) = 440) 12512914
NI = NI%*2
CONTINUE
RHOAV = RHOAV/(341416%DIA®DIA%#0425)
IF{NERR) 22922420
WRITE OUTPUT TAPE 69 1104 K
CONTINUE
FORMAT(1HOs 24HEXCEEDED TABLES AT K = s 14}
RETURN
END
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CHTO755 VAL WATSON SUBROUTINE ENERGY FOR HTO0750
SUBROUTINE ENERGY

COMMON AMPSs Ws WWs DPy DZs EPSs FZOs Zs Qs QRs DWse DIAs EXe EXX»
Hy PHIs SIGMAs RCAPs RHOs VISCs HWALLy RHOAVs RHOUs PHIW)

1

1 Ps Es DIAMy Uy

1 NMESHs Ks Ly Ms LOCy NFILEs NTAPEY
DIMENSTION DIAM{1000)s P(1000)» E(1000)y HW
DIMENSION H{2s12s48)s U(2912948)s PHI(12s

1 RCAP(12+48)y VISC(12s48)s RHO{12948)
CALL CRISIS(ZZ3sAAA)

Q = 040

1 =1

J =1

DR = DIA/(2¢0%FLOATF(NMESH} =140}

DRDR = DR#DR

R = 040

DZRU = DZ/RHOU(Js 1)

CL & (6e0%PHI(191) =~ PHI{251) = PHI{2s2) =

1 - PHI(245) = PHI(236))/(640%0425 *DR
RL RCAP{11}

OH = (E(K=1)}*E(K=1)%#SIGMA{Js1))}
H{MsJsI) = Hi{LsJsI) + (DP/RHO{JsIN)

1 +DZRU* (OH =CL =RL)
ICC =1
NI = 6
DO 40 J = 29NMESH
FJ = J
FNI = NI
IF ((FNI/FJ)=440) 19193
1 IC =1
3 CONTINUE
R = R + DR
RDR = R#DR

DTH = 642832/FLOATF(NI}
DA = R¥DR*DTH

RDTHZ = R#R#DTH#DTH

DO 30 I = 14NI

—
=
won

—

PP = 1
TF(IC) 12412410
IP = 2%

oW PN

NCHOKE s NKs» NNN

ALL{1000)

48)y SIGMA(12948)
RHOU{ 12948)

PHI(293) = PHI(244)
DR}



N I

L8

12 IF(ICC) 16916914

14 IM = (I+1)/2

16 CONTINUE
DZRU = DZ/RHOU(Js I}
PHIO = PHI(JsI)
PHIP = PHI(J+1sIP )
PHIM = PHI{J=1sIM )}

PHIPP = PHI(JsIPP)
PHIMM = PHI{JsIMM)
IF(NMESH=J) 20320422
20 PHIP = 2,0%#PHIW - PHI(Js1)
SLOPE = (PHIW =PHIP)#2,40/DR
IF (Q=SLOPE) 2122522
21 @ = SLOPE

22 CONTINUE
CL = 040 = ((PHIP=PHIM)/{240%RDR)
1 + (PHIP=-240#PHIO+PHIM) /DRDR
1 + (PHIPP=240%PHIO+PHIMM} /RDTH2)

RL = RCAP(Js1)}
OH = (E(K=1)%E(K=1)%*SIGMA{Js1})
H(MsJsI) = H{LeJsI} + {(DP/RHO(Js1})
1 + DZRU*(OH = CL = RL)}
30 CONTINUE
Icc = 0
IFLIC) 40940932
32 I1CC = 1
I1C 0
N1 2#NI

40 CONTINUE
RETURN
END
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200

201
202

100
101
102

W

CHTO756 VAL WATSON SUBROUTINE MOM FOR HT0750

SUBROUTINE MOM
COMMON AMPSs Ws WWs DPy DZs EPSe FZOs Zs Qs QRs DWe DIAs EXs EXX
Hy PHIs SIGMAs RCAPs RHOs VISCs HWALLy RHOAVs RHOUs PHIWS
Py Ey DIAMy Us
NMESHs Ko Ly Ms LOCy NFILEs NTAPE» NCHOKESs NKs NNN
DIMENSION DTIAM{1000)s P{1000})s E(1000)s HWALL(1000)
DIMENSION H{2412948)s U(2912+48)s PHI(12948)y SIGMA{12+48)
1 RCAP(12s48)s VISC(12948)s RHO{12948)s RHOU(12948) sRROU(12448)
CALL CRISIS (ZZyAAA)
IF (NNN) 994993102
IF (NMESH = 7) 20052015201
N1 = 24
GO TO 202
NI = 48
CONTINUE
DO 101 J=1yNMESH
DO 100 I=1yNI
RROU(JsI) = RHOU(JsI)
CONTINUE
CONTINUE
CONTINUE
1 =1
J =1
DR = DIA/{20%FLOATF(NMESH} =140}
DRDR = DR#DR
R = 040
DZRU = D7/ RROU(JsI)}
V0L = VISC(JsI)%(640*¥U(Lslsl) = U(Ls2s1) = U{L9292) = U{L3293) =
1 UlLg294) = UlLI295) =U(L9296))/(6e0%341416%DRDR)
UlMeds 1) UlLsJeI) = {(DP/RROUIJII)) = DZRU*VL
U(Msls2) U{Mslsl)
U{Msls3) U(Mylsl)
1¢C = 1
NI = 6
DO 40 J = 29yNMESH
FJ = J
FNI = NI
IF((FNI/FJ) =440) 19143
1¢ =1
CONTINUE
R =R 4+ DR
RDR = R*DR
DTH = 642832/FLOATF(NI)
DA = R#DR*DTH
RDTH2 = R*¥R#DTH#DTH
DO 30 1 = 1gNI

-



68

IPP =1 + 1
IMM = 1 =1
IF(I=1) 2+294
2 IMM = NI
4 IF(NI = 1) 64618
6 Ipp = ]
8 IF(IC) 12912510
10 IP = 2#]
12 IF(ICC) 16916914
14 IM = (I+1)/2
16 CONTINUE
DZRU = DZ/RROU(Js 1)
U0 = UlLsJdr 1)
UP = U(LsJ+1sIP)
UM = U(Led=19IM)
UPP = U(LsJsIPP)
UMM = U{LsJsIMM)
VO = VISC{Js1)
VP = VISC(J+1lsIP)
VM = VISC(J=191IM)
VPP = VISC(JsIPP)
VMM = VISC(JyIMM)
IF(NMESH=J) 20420922
20 UP = 040 = UlLadsrI)
VP = VISC{NMESH+191)%#240 = VISC(Jsl)
22 CONTINUE
VL = {((R+DR/240)*{(VP+V0O)/240)*{UO=UP) +
1 (R=DR/240)%{ (VO+VM)/240) % (UO=UM)) / (RDR¥DR)
2 + (({VPP+V0)/240)%(UO=UPP) + ((VO+VMM)/240)% {UO=UMM))
3 /{RDTH2})
UlMsdsI) = UlLsJsI) = (DP/RROU(JI)) = DZRU#*VL
30 CONTINUE
I1¢CcC =0
IF(IC) 40340432
32 ICC = 1
1C=0
NI = 2#N1
40 CONTINUE
RETURN
END
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CHT0757 VAL WATSON SUBROUTINE ITER FOR HTO750
SUBROUTINE ITER

COMMON AMPSs Wy WWs DPs DZs EPSs FZOs Zs Qs QRs DWy DIAs EXs EXXs

1 He PHIs SIGMAs RCAPs RHOs VISCs HWALLs RHOAVs RHOUs PHIW
1 Py E9 DIAMy Uy
1 NMESHs K9 Ly Ms LOCs NFILEs NTAPEs NCHOKES» NKs NNN

DIMENSION DIAM(1000)s P{1000)y E(1000)s HWALL{1000)
DIMENSION H{2912448)s U(2912+48)s PHI(12948)s SIGMA(12948 )

1 RCAP{12+48)y VISC(12s48)s RHO(12948)s RHOU(12948)
CALL CRISIS(ZZyAAA)
IND = 0
NCHOKE = ©
DOP = DP
P{K) = P(K=1) + DP
LoC = 0
NNN = 0
DO &4 N = 1330

LoC = N

CALL MOM
NNN = 1

CALL WDOT

DW = (WW = W)/W
IF(ABSF(DW) =~ EPS) 10420320

20 IFLIND)Y 2292251
1 DDP = DDP/240
22 IF(DW) 291043
2 DP = DP + DDP
P(K) = P(K=1) + DP
GO TO &4
3 DP = DP =~ DDP
P{K) = P{K=~1) + DP
IND = ]
4 CONTINUE
NCHOKE = 1
10 CONTINUE
RETURN

END
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CHT0758 VAL WATSON SUBROUTINE OUTPT FOR HTO0750

SUBROUTINE OUTPT
COMMON AMPSs We WWs DPs DZs EPSs FZ0s Zs Qs QRs DWe DIAs EXs EXX»

1 Hy PHIs SIGMAs RCAPs RHOs VISCs HWALLSs RHOAVs RHOUs PHIWS
1 Py Eo DIAMs Uy
1 NMESHs Ko L9 Ms LOCs NFILEs NTAPEs NCHOKE»s NKs NNN

DIMENSION DIAM{100C)s P{1000)s E{1000})s HWALL{1000)
DIMENSION H{2912+48)y U(2912548)y PHI{12048)9 SIGMA(12948)
1 RCAP(12s48), VISC(12948)s RHO(12448)s RHOU(12+48]}
CALL CRISIS (ZZsAAA)
QT = Q+QR
PRAD = QR/QT #10040
WRITE TAPE NTAPE, Ks DIAM(K)s Zs AMPSs E(K)s WyQT sHWALL (K)
1 sPRADs NMESH» PIK)#FZOsLOCHEPSsDWs DPs DZ
IF (NMESH = 7) 114s12s12
11 NI = 24
GO TO 13
12 NI = 48
13 CONTINUE
WRITE TAPE NTAPEs NIs ((H(MsJsI}s UlMeJdsI)s RHOU( Jsl}s I=1sN1)y
1 J=1sNMESH)
END FILF NTAPE
WRITE OUTPUT TAPE 633009Ks DIAM{K) sZ9AMPSsE(K) sWsQTsHWALL (K)
P(K)Y = P(K}/14013E5
WRITE OUTPUT TAPE 69299sPRADSNMESHsP{K) 9FZOsLOCIEPSIDWIEXINFILE
PI{X) = P(K)#14013E5
WRITE OUTPUT TAPE 633019H(Ms1,s1)
NI =6
DO 2 J = 2sNMESH
WRITE QUTPUT TAPE 643029 (HIMsJdsl) »1 =19NI)

FJd = J
FNI = NI
IF ((FNI/FJ) =440) 1lsls2
1 NI = 2*NI
2 CONTINUE
WRITE OUTPUT TAPE 693019 RHOU(141)
NI = 6

DO & J = 2sNMESH
WRITE OUTPUT TAPE 69302 (RHOUIJsI)s I=1sN1)

FJ = J
FNI = N1
IF((FNI/FJ) =440) 393¢4
3 NI = 2#NI
4 CONTINUE
300 FORMATI(1H1y
1 15HK = s 14 ’ 16X

3 504 DC THERMAL ARC WITH AXIAL GAS FLOW
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1X»
50X
1X
50X
1Xo
38X

RN NN

15HDIAMETER E1043s 10H METERS
15HAXIAL DIST E10e3y 10H METERS
15HCURRENT E10e3s 104 AMPS

15HVOLTAGE GRAD
15HFLOW RATE
15HWALL HEAT FLUX
15HWALL ENTHALPY

E1043y 10H VOLTS/M
E10e3y 10H KG/SEC
E10e3y 22H W/M*%2
E1043 10H J/KG

299 FORMAT(1H »

50X
1X»
50X
1X
50X
1X»
50X
1X

NN N

15HRADIATION LOSS= s F10e3 10H PERCENT
15HNME SH = s 14 /

15HPRESSURE = y E1043) 10H ATMOS
15HF20 = s E1043 /

15HLOC = s T4y 16Xy

15HEPS = » E1043 /

15HDW = sE1043510X

15HEX = y E1043 /

15HFILE = y 14)

301 FORMAT(1HOs E12e3}
302 FORMAT(1HOs (6E1243/))

NFILE =
RETURN
END

NFILE +1

Nw N

’
/

PREV STA
)
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CHT0780 VAL WATSON DC ARC = SUPERSONIC CONTINUATION - REAL GAS

COMMON AMPSs Ws WWs DPs DZs EPSs FZOs Zy Qs QRs DWs DIAs EXs EXXo
He PHIy SIGMAs RCAPs RHO» VISCs HWALLSs RHOAVs RHOUs PHIW,
Ps E9 DIAMy Uy
NMESHs Ks Ly My LOCs NFILEs NTAPEs NCHOKEs NKs NNN
DIMENSION DIAM(1000)s P{1000)s E{1000)s HWALL(1000}
DIMENSION H{2512948)s U(2312948)s PHI(12948)s SIGMA(12948)

1
1

1 RCAP(12948)s VISC(12s48)y RHO[12948)s RHOU(12448)
CALL CRISIS (ZZsAAASAMPSs NNN)
M=1
L =2

READ INPUT TAPE 55100sNFILEls NTAPEly NFILEs NTAPEs KMAXs KINC
100 FORMAT (214/414)
READ INPUT TAPE 551019 EXs ZCs THETA
101 FORMAT { E1043)
THETAR = THETA%*2,0%341416/36040
CALL LOCATE(NFILEls NTAPELl)
READ TAPE NTAPE1l» Ks» DIAM(2)y Zs AMPSs E{2)s WeQXsHWALLI(2)
1 sPX 9 NMESHs P(2)sEZ0sLOCsEPSsDWs DPs DZ
READ TAPE NTAPELsNIs ((H(MsJsT)s U(MeJsI)y RHOUL Jel)s I=1sNI}ys
1 J=1 ¢ NMESH}
P(1) = Pt2) - DP
DO 11 K = 3 sKMAX
11 HWALL {K) = HWALL(2)
K= 2
DIA = DIAM({2)}
CALL RHOAVE
CALL STATEP
QR = QX*PX/100.0
Q@ = QX - QR
CALL LOCATE (NFILESNTAPE)
CALL OUTPT
DO 6 K = 3 sKMAX
DZ = EX *DZ
Z =27 + DZ
IF(Z~-2C) 50950451
50 DIAMIK) = DIAM{2)}
GO TO 52
51 DIAM(K) = DIAM(2) + 240%(Z=2C)*TANF(THETAR)
52 CONTINUE
DIA = DIAM{K)

M=1
L=L +1
IF(3=L) 19142
1 M =2
L =1
2 CONTINUE



CALL ENERGY
IF12~2C) 60460461
60 CALL ITER
GO TO 62
61 CALL ITERS
62 CONTINUE
IF(NCHOKE) &49443

3 WRITE QUTPUT TAPE 64 202 Ks DWs U(Ms292)
GO TO 8
4 CONTINUE
CALL STATEP
NN = NN -1
IF(NN} 54546
5 NN = KINC
CALL OUTPT
6 CONTINUE
8 CONTINUE

REWIND NTAPE1
REWIND NTAPE

REWIND 8
202 FORMAT(1HOs 18HFLOW CHOKED AT K = » I4s 10Xs
1 20HFLOW RATE ERROR IS 9 2PF1247s 10H PERCENT »
2 14 HCL VELOCITY = 40PF10sls 8H FT/SEC )
CALL EXIT
END

G6




96

CHTO0781 VAL WATSON SUBROUTINE ITERS FOR HTO0780
SUBROUTINE ITERS

COMMON AMPSs Ws WWs DPs DZs EPSy FZOs Z9 Qs QRs DWs DIAs EXs EXXys

1 Hy PHIs SIGMAs RCAPs RHOs VISCy HWALLs RHOAVs RHOUs PHIWS
1 Ps Ev DIAMy Uy
1

NMESHs Ko L9 Ms LOCs NFILEs NTAPEs NCHOKEs NKs NNN
DIMENSION DIAM(100)s P{100)s E£(100)s HWALL{100)
DIMENSION H(2912948)y U(2012948)9 PHI(12+48)s SIGMA(12+48)

1 RCAP(12948)s VISC(12948)s RHO{12448)y RHOU(12448)
IND = 0
CALL CRISIS(ZZ9sAAA}
NCHOKE = 0
DDP = DP
P(K} = P(K=1) + DP
LoC = 0
NNN = 0
DO 4 N = 1930
LoC = N
CALL MOM
NNN = 1
CALL wDOT

DW = (WW = W)/
IF(ABSF{DW) = EPS) 10s20420

20 IFUIND) 2292241
1 DDP = DDP/240
22 IF(DW) 342092
2 DP = DP + DDP
P{K) = P(K=1} + DP
GO TO &
3 DP = DP - DDP
P(K) = PIK~=1) + DP
IND = 1
4 CONTINUE
NCHOKE = 1
10 CONTINUE
RETURN

END



APPENDIX D

FORTRAN PROGRAM TO EVALUATE GAS PROPERTIES USING PREPARED TABLES STORED

ON A MAGNETIC TAPE

These programs move prepared gas tables from a magnetic tape to the core
storage and make interpolations (either logarithmic or linear) from the tables
to obtain the gas density, thermal conductivity potential, electrical conduc-
tivity, radiance, and viscosity from known values of enthalpy and pressure.

The input for these programs is the magnetic tape prepared by the
program in appendix E.

‘l'”
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CHTO767 VAL WATSON SUBROUTINE FOR AIR TABLES = INPUT ENTHALPY AND P
SUBROUTINE NTAB (Ps Hs PHI» SIGMAs RCAPy VISCy NTAPE» NERR)
DIMENSION PHIT(2s300)s SIGMAT(29300)y RCAPT(24300)s VISCT(29300)
CALL CRISIS (ZZ+PHIT)

IF (IN) 19192
1 CALL LOCATE ( 2¢NTAPE)
READ TAPE NTAPEs ((SIGMAT(IsJ)s J=13281)s 1=142)
1 (¢ PHIT(Iosd)s J=19281)y 1=1)2) ’
1 {( RCAPT(1sJ)y J=19281)y I=192)
1 (0 VISCT(TI9d)s J=19281)y 1=1y2)
REWIND NTAPE
IN =1
2 NERR = 0
IF (240E9=H } 34444
3 NERR = 1

GO TO 10

IF (H = 240E7) 535460

I = XINTF{H/240E+5) + 1

HH = (H/240E+5) -~ FLOATF(I=1)

GO 70 7

60 IF (H=240E8) 61361962

61 I = XINTF(H/240E+6) +91

HH = (H/2s0E+6) = FLOATF(I~ 91}
GO TO 7
62 I = XINTF(H/240E+7) +181

wm &

HH = (H/240E+7) = FLOATF(I=-181)

7 P1 = PHIT(1s1) + { PHIT{1s1+1) = PHIT{1s1))%*HH
P2 = PHIT(29I) + ( PHIT(2y1+1) = PHIT(2s1))%HH
S1 = SIGMAT(1s1) + (SIGMAT(19I+1) = SIGMAT{191))*HH
S2 = SIGMATI(2+1) + (SIGMAT(2sI+1) = SIGMAT(2s1) ) %HH
Rl = RCAPT(1,I) + ( RCAPT(1sI+1) = RCAPT(141})*HH
R2 = RCAPT(241) + ( RCAPT{29I+1} = RCAPT(241))#HH
V1 = VISCT(1lsI) + { VISCT{19I+1) = VISCT(191))*HH
V2 = VISCTI(29I) + { VISCT(291+1) = VISCT(2+11})*HH
PP = LOGF(P)/2s3026

PHI = Pl + (P2 = Pl)*pp
SIGMA = EXPF(S1 + (S2 = S1)#PP}
RCAP = EXPF{R1 + (R2 = R1l)x*PP)
VISC = V1 + (V2 = V1)#PP

10 RETURN
END



LB ]

66

CHTO768 VAL WATSON SUBROUTINE FOR AIR DENSITY TABLE

(SR

60
61

10

SUBROUTINE NRHO (Ps H» RHO» NTAPE» NERR)
DIMENSION RHOT(24300)
CALL CRISIS (ZZ4RHOT)
IF (IN) 191y2
CALL LOCATE (1 #NTAPE)
READ TAPE NTAPEs ({ RHOT(IsJ}s J=19281)y [=132)
REWIND NTAPE
IN =1
NERR = 0
IF {(260E9=H ) 39494
NERR =1
GO TO 10
IF (H = 230E7) 595960
I = XINTF(H/240E+5) + 1
HH = (H/240E+5) = FLOATF(I=1l)
GO TO 7
IF (H=240E8) 61161962
T = XINTF({H/240E+6) +91
HH = (H/2¢0E+6) = FLOATF{I= 91)
GO TO 7
I = XINTF(H/2,0E+7} +181
HH = (H/240E+7) = FLOATF(1=-181)
RH1 = RHOTI(1s1) + { RHOTI!19I+1l) =~ RHOT{191})%HH
RH2 = RHOT(241) + { RHOT(29I+1) = RHOT(2#1)) *HH
PP = LOGF(P)/243026
RHO = P/({RH1 + (RH2 = RH1}#*PP)
RETURN
END
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CHTO0769 VAL WATSON SUBROUTINE FOR AIR TABLES « INPUT ENTHALPY AND P

W B

60
61

62

10

SUBROUTINE NTEMP(PsHsSIGMASNTAPEINERR)
DIMENSION SIGMAT!293090)

CALL CRISIS (ZZsSIGMAT)

IF (IN) 19192

CALL LOCATE!( 34NTAPE)

READ TAPE NTAPEs ((SIGMAT(Isd)s J=13281)y 1=142}%
REWIND NTAPE

INal

NERR = 0

IF (240E9=H } 33494

NERR =1

GO TO 10

IF (H = 240E7) 545460

1 = XINTF(H/240E+5) + 1

HH = (H/240E+5) = FLOATF(1=1)

GO T0 7

IF (H=2s0EB8) 61961362

I = XINTF(H/240E+6) +91

HH = {(H/240E+6) = FLOATF(I= 91)

GO TO 7

I = XINTF(H/240E+7) +181

HH = (H/2+0E+7) = FLOATF(I=-181}

S1 = SIGMATI(1s1) + (SIGMAT(1sI+41) = SIGMAT(Lls1))*HH
S2 = SIGMAT(2s1) + (SIGMATI{29141) = SIGMATI291))%HH
PP=LOGF (P} / 243026

SIGMA = (S1 + (S2 = S1)*pPpP)

RETURN

END




APPENDIX E

FORTRAN PROGRAM FOR PREPARTNG GAS TABLES FOR USE IN THE PROGRAM

IN APPENDIX D

This program prepares the magnetic tape required for the program in
Appendix D from any gas tables wherein the gas properties are given in terums
of any two state properties. The program fits a third-order polynomial curve
between the middle two points of each set of four adjacent points of the
input tables. The gas properties are taken from this curve in equal incre-
ments of enthalpy to form the table that is put on magnetic tape for use with
the programs of appendix D. To check the fitted curves, the program plots
the input data (shown as circles) and the fitted curves on the same graph,
as shown in figure 2. (When the curve did not go through the symbols, the
automatic plotter was out of adjustment; within the program the curve was

forced through each point.)

101
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CHTO?

299

301
298

300

66 PEGOT GENERATES TABLES AND PREPARES TAPE AND PLOTS 2401

DIMENSION H1{100)sP(10)sPHIL{100)sSIGMALI{100)sRCAPL(100)sVISCL(L100HTOTSS
1} sRHOL1(100) sHTEMP1(100) HT0766
DIMENSION HA(300) sPHIA(300) sSIGMAA(300) yRCAPA{300)sVISCA(300) sRHOAHTOT766
1(300) s TEMPA(300)sYY{300)sRCAPLA(300)9RRHOA(300) HT0766

DIMENSION H2(100) sPHI2(100) sSIGMA2(100) sRCAP2(100)sVISC2(100) sRHO2HTO766
1(100) sHTEMP2{100) sPTEMP1(100) sPTEMP2(100)sSTEMPL(100)9STEMP2(100)sHTOT766
2RTEMP1(10N) sRTEMP2(100) s VTEMPL(100) sVTEMP2(100)90TEMP1(100)sOTEMP2HTOT66
3{100} _ HT0766

DIMENSION RHOT(29300)s TEMPT(23300)» HT{2+300}

DIMENSION PHIT(25300)s SIGMAT(29300)#% RCAPT(29300)s VISCT(24300)

CALL CRISIS (ZZ)yH1)

CALL LOCATE (18)

Pl{l)=140

P(2)=1040
P{3) = 045
P(4) = 540
P(5) = 5040
P{6) = 140

WRITE OUTPUT TAPE 69299

FORMAT (1H1s5Xs 10H PAGE 1 )
1=1 HT0766
CALL GENTAB(H1sHTEMPL1sNXY1IHsHAsTEMPASDXXsNsO929PHIASTEMPAPI) HT0766

CALL GENTAB(STEMP1sSIGMALSNXY1S$TEMPA+SIGMAAIDXXIN9O#39PHIASTEMPASHTO766
1 Pyl)

CALL GENTAB(RTEMP1sRCAP1sNXYLIRs TEMPASRCAPASDXXINIO#3»PHIASTEMPAWPIHTOT66

in HT0766
CALL GENTAB(VTEMP1sVISCLsNXY1VeTEMPASVISCAIDXXsN90929PHIASTEMPASPIHTOT66
11) HT0766

CALL GENTAB(PTEMP1sPHI1sNXY1PsTEMPAsYYsDXXoNs1s2sPHIAWTEMPA9PI) HTO0766
CALL GENTAB(OTEMP1sRHOL1sNXY1Os TEMPASRHOAIDXXsNIO 94 IPHIAITEMPASP1IHTO766
END FILE 7

GO TO 300 HT0766
WRITE OUTPUT TAPE 64298

FORMAT (1H1s5Xs 10H PAGE 2 )

CALL GENTAB(H2sHTEMP29NXY2HsHAS TEMPAIDXXsNsO»29PHIASs TEMPA WPy ) HT0766
CALL GENTAB(STEMPZ2sSIGMAZ2SNXY2SsTEMPASSIGMAAIDXXINsO93sPHIAWTEMPAIHTOTE6
1Py1} HT0766
CALL GENTAB(RTEMP23sRCAP2sNXY2Rs TEMPAIRCAPASDXXINSO933PHIAYTEMPAIPIHTOTES
11} HT0766
CALL GENTAB(VTEMP23sVISC2sNXY2VsTEMPASVISCAIDXXsNI0s29PHIASTEMPASPIHTOTE6
11) HT0766

CALL GENTAB(PTEMP2+PHI2)NXY2P s TEMPASYYSDXXoN9192sPHIASTEMPAYPI) HTOT66
CALL GENTAB (OTEMP2sRHO2sNXY20 s TEMPASRHOASDXXoNSOs49PHIASTEMPASP1IHTOT66
END FILE 7

DO 320 J=z1sN HTO0766
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HT(IsJ) =HA(J)
TEMPT(IsJ) =TEMPA(J)
RHOT(I9J) =RHOA(J)
SIGMAT(Iy9J) =SIGMAA(J)
RCAPT({1sJ} =RCAPA(J)
VISCTI{IsJ) =VISCAL(J)
320 PHITI(I»J) =PHIA{J)
o
C PREPARING VALUES FOR TAPE
I=1+1 HT0766
IF(I=2) 30193014302 HT0766
302 WRITE TAPE 8s({(RHOT(IsJ)sJ=1eN)sI=1s2) HTOT766
END FILE 8
WRITE TAPE B8» ((SIGMAT{1sd)y J=1»
(¢ PHIT(Isd)s J=1y
({ RCAPT(IsJ}y J=1y
({ VISCT(Isd)y J=1y

ZzZ2zZz2Z2Z
-

Rnas

P .

- w w W

[SESY SN
-

1
1
1
END FILE 8
WRITE TAPE 8y ((TEMPT{IsJ)sJd=1s N Jsl=192)
END FILE 8
REWIND 8
100 FORMAT (5E1245/(5E1245))
C
C PRINTOUT AND PLOTS
C
C CHECK FOR ERROR IF OVERRUN TABLES ®
NERR=NERR
IF (NERR) 60460461
61 WRITE OUTPUT TAPE 64102
GO TO 62
60 WRITE OUTPUT TAPE 6» 103
62 NERR = 0
HOM = 245E6
POM = 140
CALL NRHO{POMyHOMyRHOA 989 NERR) HT0T766
IF (NERR} 701970471
70 WRITE OUTPUT TAPE 613102
GO TO 72
71 WRITE OUTPUT TAPE 64103
72 NERR =0
CALL NTAB(POMsHOMsPHIAsSIGMAAIRCAPASVISCAI8INERR) HT0766
IF (NERR) 80480181
80 WRITE OUTPUT TAPE 65102
GO. TO 90
81 WRITE OUTPUT TAPE 63103
90 CONTINUE




©OT

102
103
405
404
400

403

401
407

402

FORMAT (1HOs 30H ERROR SIGNAL INOP
FORMAT (1HO» 30H ERROR SIGNAL OKAY
READ INPUT TAPE 594004 JAM

READ INPUT TAPE 59400)NOC

READ INPUT TAPE 5429XRANGE

FORMAT (2E1043)
FORMAT (14)

KATH = 1

IN =0

NPLOT = 0

DO 401 K=236

CALL NPLOTS(XNAME s YNAME s XRANGE sP (K ) » CONVX » CONVY s SCALEX »SCALEY s
1 NPLOTsINIORIGXSORIGY »CONVL)

IN=1
NPLOT=1
KATH=KATH+1
NOC=aNOC=1

IF (NOC)40294029403
END FILE 7
JAM=JAM=]

REWIND 8

IF(JAM) 40514059404

HT0766

HTO0766
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CHT0785 PEGQOT SUBROUTINE TO GENERATE TABLE VALUES

NONONONONONONOON

199

301
200
201

198

310
331

313

312
314

302

303
304

SUBROUTINE GENTAB(XsYsNXYsXXsYYIDXXoNINUMByJUMBsPHIASTEMPASPy 1)
DIMENSION X(300)sY(300)sXX(300)sYY(300)sPHIA{300)sTEMPA(300)sP({10)
14HA(300)
CALL CRISIS {Z2ZZsX)
READ INPUT TAPE 53199sNAXINAY
FORMAT({ 2A6)
READ INPUT TAPE 532200 sNXY
READ INPUT TAPE 542019CXsCY
READ INPUT TAPE 5s20130Xs0Y
READ INPUT TAPE 59201y (X{ JJYeY( JJ)eJdJ=leNXY)
FORMAT (14)
FORMAT(2E1043)
WRITE QUTPUT TAPE 63198aNAXSNAYsCXsCY o (X{JJIYsY(JJYadJ=1sNXY)
FORMAT(1H1 25X 9A6915XsA6//24Xs 10HCONVERSIONS10X 9 10HCONVERSION/
1 17X92E20e48//(17Xs2E2048))
NAXsNAYs=NAME OF X AND Y ARRAYS
CXsCYs=CONVERSION FACTORS
O0Xs0Ys=0RIGINS FOR XsY PLOTS
X=X ARRAY OF INPUT TABLES
Y=Y ARRAY OF INPUT TABLES
NXY=NUMBER OF ARRAY VALUES IN EACH X AND Y
XX=ABSCISSA TABLE VALUES (IN OUR CASE HT)
YY=ORDINATE TABLE VALUES (TEMPTsPHIT»SIGMATETCs)
DXX=DELTA HT VALUE
N=NUMBER OF VALUES IN FINAL TABLE (191)
JUMB FOR UNITS NEED CORRECTED FOR TAPE
NUMB=1 FOR PHIT TO USE SIMP SUBROUTINEs=0 FOR ALL OTHERS
DMON=0,0
GO TO(304+30293109312)»JUMB
DO 331 JJ=1sNXY i
Y(JJ) =Y (JJ)*CY
X{JJ ) =X{JJ)*CX
CALL SPLOTS{ Xs YsNXY3T7e09104090Xs0Y95X9SY917)
AY=LOGF(CY)
DO 313 JJ=1sNXY
X{JJ)=X{JJy 7CxX
Y( JJ Y=LOGFIY( JJ)/CY) +AY
GO TO 304
DO 314 JU=1sNXY
YO JJ Y=2P(T1) /(Y (JJ) *CY)
GO TO 304
DO 303 JJd=1sNXY
YU JJ Y=Y OJ ) %CY
X{ JJ y=xXt JJ ) *CX
Yyt 11y=vy( 1)
DXX=2+0E5
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N=281
XX{(11=040
DO 305 J=2sN
IF (KITE ) 35093494350
349 TF  {XX{J=1) = 1499E7 ) 31543164316
316 DXX=240E6
IF  (XX{J=1) = 1499E8 } 31543174317
317 DXX=240E7
315 XX{J)=XX{J=1)+DXX
350 CALL TAINTIXsYs XXt J)aYY( J)sNXYs39NERR9DMON)
NERR=NERR
GO TO (305932069306} sNERR
306 WRITE OQUTPUT TAPE 69307sXX{ J)sYY( J)
307 FORMAT(1H1928Xs25HERROR IN TAINT SUBROUTINE //30Xs2HXX912Xs2HYY/24
1Xs2E1548)
CALL EXIT
305 CONTINUE
KITE = 1
IFINUMB) 30843514308
308 PHIA( 1)=YY( 1)
DO 311 J=2sN
CALL SIMP(PHIA( J)s»TFMPA sYY sJell1)
GO TO (311+30993099309)s11
309 WRITE QUTPUT TAPE 69300s11sJ
300 FORMAT{1H]1928Xs25HERROR IN SIMP SUBROUTINE //30Xs2HI $12Xs2HJ /24
1X92110)
CALL EXIT
311 CONTINUE
351 GO TO (321932193329321)3JUMB
332 DO 333 K=1»N
333 Y(K) = EXPF({YY(K))
CALL PLOTWS{OX90YsSXsSYsXXs YsNsT9=179NERR )
GO TO 322
321 CALL SPLOTS { XsYsNXY37409106090Xs0YsS5X9SYr17)
CALL PLOTWS ( OXsOYsSXsSYsXXsYYsNsT9=17sNERR )
322 WRITE OUTPUT TAPE 69253sNAXsNAYsSXsSYs0Xs0Y

253 FORMAT ( lH1ls 5XsA6s 5XsA695X910HSCALE X = sE10e395X9s10HSCALE Y =
1 9E104395X910H ORIG X = sE104395X910H ORIG Y = sE10e3 )
RETURN
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CHT2136 EVA PEGOT

10
11

12
13

32

34
36

38
41

42

b4
46

48
51

1

SUBROUTINE SPLOTS(XsYsNUMsRANGEXsRANGEY sORIGX9ORIGY s SCALEX»SCALEY

NBYM)

SET UP SCALES AND PLOT

DIMENSION X{500)s Y(500)

CALL CRISIS (z22z4 All)
XM=X (1)
DO 11 J=1NUM
IF (XM=X{J}) 10910911
XM=X{J)
CONTINUE
YM=Y (1)
DO 13 J=19NUM
IF (YM=Y{J}) 12912913
YM=Y{J)
CONTINUE
QY = YM/RANGEY = 140E=30
EXPQY = (LOGF (QY)/2430258 )
IF (EXPQY ) 13192
EXPQY = EXPQY =140
EXPQY = INTF ( EXPQY )
AQY = EXPF (LOGF (QY} = EXPQY #* 2430258 )
IF (AQY =240 ) 32934934
SCALEY =2.0%10,0%#*%EXPQY
GO TO 41
IF (AQY = 440 )} 36936938
SCALEY = 440%#1040%%EXPQY
GO TO 41
SCALEY = 10.0%#10+0%%EXPQY
QX = XM/RANGEX =140E=30
EXPQX = (LOGF (QX )/ 2430258 )
IF (EXPQX ) 33394
EXPAX = EXPQX =140
EXPQX = INTF ( EXPQX )
AGX = EXPF (LOGF (QX) = EXPQX * 2430258 )
IF (AQX = 240 ) 42944944
SCALEX = 240%#1040%*EXPQX
GO TO 51
IF ( AOX = 440 ) 4694648
SCALEX = 4,03%#1040%%EXPOX
GO TO 51
SCALEX = 1000%10s0#%#EXPQX
CALL PLOTWS (ORIGXSORIGYsSCALEXSSCALEYsXpYINUMs 7ToaNBYMINERR)
RETURN

END

401
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APPENDIX F

FORTRAN PROGRAM FOR PLOTTING IN PICTORIAL FORM THE RESULTS

OF THE PROGRAM IN APPENDIX B

This program reads from magnetic tape the results of the program in

appendix B and plots these results in pictorial form as shown in figures 41

through L4h.
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400
402
100
104

40

42

702
700

10

DIMENSION
1 HH(10
2 QR{10
s TEMP (100}

CALL CRISI

READ INPUT

READ INPUT

READ INPUT

READ INPUT

READ INPUT

IF(NO

CONTI
FORMAT(E10
FORMAT(14)
IF (NT =NT

CALL LOCA
KEND = 1
NT = NTAP
KSKIP = K
IF(KSKIP)
KSKIP = =
CONTINUE
CALL SKIP
KEND = KL
NUMM = Ki
KR = K1
DO 50 K =
READ TAPE
1l PRAD(
2 HAVE(
READ TAPE
U(NMESHP)
RHOU { NME

R{1Y

NME SH

R{NME

H{NME

HH(K)

HR{K)

QR (k)

KR =

CHTO73T VAL WATSON PLOTS OUTPUT FOR HTO720 PLOTS TEMP 401

H{100)s R{100)s RHOU{100)y» U{100)» RUH(100)s RUU(L00)s
00)y HR{1000)s HAVE(1000)s RUHA(1000}s HRAVE(1000},
00)y QT(2000)s PRAD(1000)s E(1000)s P{1000}s Z2(1000)

S{ZZyH)
TAPE 59 1049 KSe KLy Kls NTAPE
TAPE 53 1009 CRAy CRBs CHs CRU» CRUH
TAPE 5s 100s SRy SHs SRUs SRUHs SUs SRUUs EX
TAPE 54100+STEMP
TAPE 59 1049 NOTHC
THC) 400494009402
READ INPUT TAPE 59 100s As CPOK
NUE
03)

APE )} 40942940
TE (1oNTAPE )

E

S~KEND
70047029700

0

{KSKIPyNTAPE)
- K§ + 1

1 sNUMM
NTAPEs My DIAMs Z(K)9 AMPSy E(K)s Ws QT(K)y» HWALL)Y
K)s NMESHs P({K)s FZOs LOCs EPSs DWy DPy D29
K)s RUHA{K)s HRAVE(K)
NTAPEs (R({J)s HE U)y UL J)s RHOU(J)» J=1oNMESH)
= 060
SHP) = 040
= 040
P = NMESH + 1
SHPY = DIAM/ 240
SHP) = HWALL
H{2)
HAVE (K} /HH(K)
QT{K)*PRAD(K)} /10040
KR + 1

IF(KI=KR} 10310912

Do 8

KR = 0
J=1sNMESHP
RUUGJ) = RHOULJI®U(Y)



TTT

8

20

22

12

24
50

RUH{J) = RHOUlJI*H(J)
CONTINUE
DOR = EX¥#Z(K)
ORA = CRA + DOR
ORB = CRB + DOR
OH = CH + 0¢5%DOR
ORU = CRU + 045#DOR
ORUH = CRUH 4+ 0¢5*DOR
NUM = 2#NMESH+1
NP = NUM
DO 20 JP = 1yNMESHP
JJP = {NMESHP=JP+1)
R{NP) = R{JIPY
H{NP} = H{JJP)
UINP) = UlJJP)
RHOU(NP) = RHOU(JJP)
RUUINP) = RUUIJIP)
RUH{NP) = RUH{JJP)
CALL NTEMP (P(K)sH(NP}sTEMP(NP)y 8 sNERR)
NP =2 NP=l
CONTINUE
DO 22 JP=2yNMESHP
JPN = {JP+NMESH)
RINP) = 040=R{JPN)
H(NP} = H{JPN)
UINP) = UJPN}
RHOU(NP) = RHOU{JPN)
RUUINP) = RUU(JPN)
RUH{NP} = RUH(JPN}
TEMP(NP)=TEMP{JPN)
NP = NP=1l
CONTINUE

CALL PLOTWS{ORA»
CALL PLOTWS(ORBY
CALL PLOTWS(ORAS
CALL PLOTWS(ORB»
CALL PLOTWS(ORAS

OH
OH » SR
ORU

ORU s SR
ORUHs SR

SH. s Ry H sNUM»7 9=19NERR)
SU 9 Ry U sNUM 97 s=1sNERR)
SRU » Rs RHOU »NUMs79-19NERR)
SRUUs Rs RUU sNUM»79s=19NERR)
SRUMs Ry RUH sNUM»T7s=19NERR)

CALL PLOTWS (ORB’OPUH!SRDSTEMPORDTEMP!NUMI?"IQNERR)

CONTINUE
IF(K=NUMM) 24450450
CALL SKIP({1sNTAPE)
CONTINUE

END FILE 7
CALL SPLOTS(ZsHH»
CALL SPLOTS(ZsHAVES
CALL SPLOTS{(ZsRUHAS
CALL SPLOTS(ZsE>

NUMM s
NUMM s
NUMM s
NUMM»

10409 7003 =14409=144955X9SS519=1)
10609 7409 =14409=5e0955X95529=1)
10409 Te09 =14409+40955X35539=1)
10409 7409 0e0s=144955X95549=1)
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CALL SPLOTS(ZsQTs NUMMs 10609 740y Oe09= 548SSX95559=1)
CALL PLOTWS(0g3=543SSX35S5129QRINUMMs79=1sNERR)
CALL SPLOTS(ZsHRy NUMMs 10409 Te0» 0s09 44055X98569=1)
CALL SPLOTSI(ZsPy NUMMy 10409 7409 0e0% 4e9SSX98579~1)
TFINOTHCY 50045009502
500 20 = W*CPOK/3e1416
ZBAR = Z(NUMM)/1(Z0)
HINF = 064307 *#CPOK*AMPS/(SQRTFLA}Y*DIAM/240)

HINFA = HINF*04433

QINF = 043831 *AMPS/(SQRTF(A)¥DIAM®DIAM/440)
EINF = 2440/ (SQRTF(A)*DIAM/240)

HOBAR = HH(1)/HINF

RUHAB RUHA(1)/HINFA

HAVEB = HAVE(1)/HINFA

SCZ = S5X/(20)

SC1 = SS1/HINF

5C2 = SS2/HINFA .
$C3 = SS3/HINFA

SC4 = SS4/EINF

SC5 = SS5/QINF

CALL TCURVE{(ZBARSRUHABs =14409 =~14409 SCZs SCls
CALL TCURVE(ZBARSRUHABy ~14409 =540s SCZ9» SC29
CALL TCURVE(ZBARIRUHABs =14409 4909 SCZs SC3y
CALL ECURVE(ZBARsRUHAB» 0s0» =14409 SCZy SChy
CALL TCURVE(ZBARSRUHAB 0e09 =540» SCZs S5C5H»
502 CONTINUE
END FILE 7
CALL SIMP{VOLTsZsEsNUMMINERR]
NERR=NERR
GO TO (900s9019901+901) sNERR
901 WRITE QUTPUT TAPE 63902 sNERR
902 FORMAT(1H1s25H ERROR IN SIMP NERR = s12
CALL EXIT
900 WRITE OUTPUT TAPE 63 204
204 FORMAT(1H1ls 30HPLOTS IN MKS UNITS
11Xs 50H SHEET 1 = RADIAL PROFILES

4 5X9 50H ENTHALPY - LOWER LEFT

4 5Xs 50H MASS FLUX = CENTER LEFT

4 5X9 50H ENERGY FLUX = UPPER LEFT

4 5X» 50H VELOCITY =~ LOWER RIGHT

4 5Xy 50H MOMENTUM FLUX = CENTER RIGHT

4 5X» S50H TEMPERATURE = UPPER RIGHT
SL = 140/EX

SR = ABSF(SR)

WRITE OUTPUT TAPE 63 210s SRs SLs SHs SRU» SRUHy SUs
210 FORMAT(1HOs 40H SCALES FOR RADIAL PROFILES ARE

1 20Xs 30HRADIAL DISTANCE

NERR}
NERR)
NERR)
NERR)
NERR}

SRUU s STEMP

y E1003

/

NN N ~
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1 20Xs 30HAXIAL DISTANCE s E10e3 7/
1 20Xs 30HENTHALPY » E10e¢3 /
1 20Xs» 30HMASS FLUX » E10.3 /
1 20Xs» 30HENERGY FLUX s E1063 7/
1 20Xy 30HVELOCITY s E10¢3 /
1 20Xs 30HMOMENTUM FLUX ?» E10e3 /
1 20Xs 30HTEMPERATURE y E1043 )
WRITE OQUTPUT TAPE 64 200

200 FORMATI(1HOs
1 50H SHEET 2 = AXIAL PROFILES /
2 5Xs 50H CENTERLINE ENTHALPY = LOWER LEFT /
3 5Xs S50H SPACE AVERAGE ENTH = CENTER LEFT /
4 5Xs 50H MASS AVERAGE ENTH - UPPER LEFT /
4 5X9 50H VOLTAGE GRADIENT - LOWER RIGHT /
4 5Xs S50H WALL HEAT FLUX = CENTER RIGHT /
4 5X9 S50H PRESSURE GRADIENT = UPPER RIGHT /
4 5Xy 50H RATIO OF AVE TO CL ENTHALPY = UR )

WRITE QUTPUT TAPE 6s 202s SSXs SS1s SS52s S539 5549 SS59 S5S7» SS6

o9VOLT

202 FORMAT(1HOs 40OH SCALES FOR AXIAL PROFILFS ARE /
1 20Xy 30HAXTAL DISTANCE y E10e3 /
1 20X9 30HCENTERLINE ENTHALPY s E10e3 /
1 20X» 30HSPACE AVERAGE ENTHALPY y E10e3 /
1 20Xs 30HMASS AVERAGE ENTHALPY y» E10e3 /
1 20Xs 30HVOLTAGE GRADIENT vy E1043 /

"1 20Xs 30HWALL HEAT FLUXES sy E10e3 7/

1 20Xy 30HPRESSURE GRADIENT s E10.3 /
1 20Xy 30HRATIO OF AVE TO CL ENTHALPY y E1043 /
1 20Xy 30HCONSTRICTOR VOLTAGE 9 E10e3 )

RADIUS=DIAM/240

WOVA=W/{3414159%DIAMXDIAM/440)

HWOVA=HINF*WOVA

SHINF=SQRTF (HINF}

PMKS=14013E5%P (1)

WRITE OUTPUT TAPE 693004Z0RADIUS SHINF s WOVA SHWOVA 9 SHINF sPMKS s

P(1)
300 FORMAT{1H194X»20H(LCYIZ(0) 3E1245915H M /
. 5X920HR 9E1245915H M /
. 5Xs20H{LCYH{INF) 3E1245315H J/KG /
. 5X920H(LCIW/A 1E1245915H KG/SM*%2 /
. 5Xy20H{LCYH{INF)Y(LCIW/A VE1245915H W/M*%2 /
. BX920H(LCIYH{INF ) %*#1/2 9E1245915H M/S /
s . 5X920H(LCIP(O) $E1245915H NEWTONS /M#*2 ’
e5X9E1245915H ATM /7)
WRITE QUTPUT TAPES69301+Z209RADIUS sHINFsHINFASEINFIQINFIPMKSHP (1)
301 FORMAT(1HOs&Xs20H({LC)Z2(O0) 'E1245915H M /
N 5X920HR sE1245915H M /
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o/ B5X929H!(
#5Xs20HCP/K
#5X320HA

GO TO 2
END

SXe20H(LCIH{INF)
5X320HHINF)
5X920HE{ INF)
5X920H(LCYQUINF)
5SX920H(LCIPLO)
e5XsEL1245915H ATM
WRITE OUTPUT TAPE 63302 sCPOKsA
302 FORMAT{1HOs4Xs29H({LC) SIGNIFIES LOWER

)

SIGNIFIES SUBSCRIPT
sE1245915H
sE12e5915H

$E12¢5415H
sE1245315H
$E1245915H
9E1245915H
»E1245915H

CASE

MS/KG
1/7va*2

J/KG

J/KG

V/M

W/M*%2
NEWTONS /M#*2
/7)

11/
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CHTO738 VAL WATSON = PLOT OF 1/F(2Z)

22
20

10

SUBROUTINE ECURVE!(ZBARyHOBAR»OX»0Ys5XsSYsNERR)

DIMENSION F({110)s 2(110) sE(110)
NERR=0

IF {140=HOBAR) lsls2

NERR = 1

GO TO 10

252040~ LOGF{140=HOBAR*HOBAR} /1145

DZ = ZBAR/10040

ZR = 78§

DO 3 I=1,101
FII) = SOQRTF(1le0 = EXPF{=1145%ZR})
E{I} = 140/F(1)

IF{E(I}=540}) 20920322

E(IY = 540
CONTINUE
Z(Iy) = ZR -25

IR = ZR + DZ

CALL PLOTWS({OX30YsSX3SYs29E9101979=179NERR)
RETURN

END
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CHTO743 VAL WATSON = PLOT OF F(Z)

10

SUBROUTINE TCURVE(ZBARSHOBARIOXs0Y»SXsSYSNERR)

DIMENSION F(110)s Z(110)
NERR=0
IF {140=HOBAR) 19192

NERR = 1

GO TO 10

25=0¢0~ LOGF{1¢0=-HOBAR*HOBAR) /1145

DZ = ZBAR/10040

ZR = 28§

DO 3 I=1,4101
FILI) = SQRTF(1e0 = EXPF(=1145%ZR))
Z(I) = ZR -ZS

ZR = ZR + DZ

CALL PLOTWS(OXsOYsSXaSYsZsF3101979=179sNERR)

RETURN

END



10.

11.

12.

13.

REFERENCES

Stine, Howard A.; and Watson, Velvin R.: The Theoretical Enthalpy
Distribution of Air in Steady Flow Along the Axis of a Direct-Current
Electric Arc. NASA TN D-1331, 1962.

Marlotte, G. L.; Harder, R. L.; and Prichard, R. W.: The Radiating Arc
Column. AGARDograph 84, pt. 2, 196k, pp. 633-672.

John, R. R., et al.: Thirty-Kilowatt Plasmajet Rocket-Engine Develop-
ment - Third-Year Development Program. Avco Rep. RAD-SR-64-80,
March 196k.

Weber, H. E.: Growth of an Arc Column in Flow and Pressure Fields.
AGARDograph 84, pt. 2, 1964, pp. 845-881.

John, R. R., et al.: Theoretical and Experimental Investigation of Arc
Plasma-Generator Technology. Part I. Applied Research on Direct and
Alternating Current Electric Arc Plasma Generators. Avco Rep.
ASD-TDR-62-729, Sept. 1963.

Eckert, E. R. G.; and Anderson, J. E.: Performance Characteristics of a
Fully-Developed Constricted Transpiration-Cooled Arc. AGARDograph
8k, pt. 2, 196k, pp. 751-795.

Watson, Velvin R.: Comparison of Detailed Numerical Solutions With
Simplified Theories for the Characteristics of the Constricted-Arc
Plasma Generator. Proc. 1965 Heat Transfer and Fluid Mechanics
Institute, Stanford Univ. Press, 1965, pp. 2k-41.

Masser, P. S.: Arc Jet Design. ARS Paper 2352-62, March 1962.

Ahtye, Warren F.; and Peng, Tzy-Cheng: Approximations for the Thermo-
dynamic and Transport Properties of High Temperature Nitrogen With
Shock-Tube Applications. NASA TN D-1303, 1962.

Yos, Jerrold M.: Transport Properties of Nitrogen, Hydrogen, Oxygen,
and Air up to 3O,OOOo K. Research and Advanced Development Division,
Aveco Rep. RAD TM 63-7, March 1963.

Spitzer, L.: Physics of Fully Ionized Gases. Interscience Pub., Inc.,
N. Y., 1956.

Nardone, M. C.; Breene, R. G.; Zeldin, 8. S.; and Riethof, T. R.:
Radiance of Species in High Temperature Air. Space Sciences Laboratory,
General Electric Co., R63SD3, June 1963.

Anderson, J. E.: Transpiration Cooling of a Constricted Flectric-Arc
Heater. Rep. AFARL 66-0157, Aerospace Res. Lab., Wright Patterson AFB,
Ohio (Heat Transfer Lab., Univ. of Minnesota, AF contract no.

AP 33(657) -7380), March 1966.

117



TABLE I.- SOURCES OF THERMODYNAMIC AND TRANSPORT PROPERTIES
FOR HYDROGEN AND NITROGEN

Gas
Property . ——
Nitrogen Hydrogen
n(J/xg) 0 - Tx107 X107 - 23x107 0 - 5.6x10°
o Ref. 9O Ref. 10 Ref. 10
k Ref. 9 Ref. 10
o Ref. 10 Ref. 10
. Ref. O Ref. 11
Radiation Ref. 10 Ref. 10
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TABLE IT.- SEVERAIL INTERESTING PROPERTIES OF THE CONSTRICTED ARCS THAT ARE SHOWN PICTORIALLY IN FIGURES

Transpiration :ﬁiﬁ: e aizicee Voltage W:ll hg‘at Mﬁd;‘wﬂt :Length at
e tas sieemnen, Oorent, TIOISS ey el Comtmotor Mot entiely wthaln srasienm | rate o iranerer XS COmUTS Tl
. cm Tps g/s mass flux, atm m at exit at exit, at exit, at exit, at exit, rate, transfer min’ at exit
kg/su J/kgé J/kgé v/m o, 5 rate, m
X 10 X 10 x_10' X 108 4
10 No 1.270 896 4. 80k 0 1.700 0.209 75.51 0.546 0.773 1855 11.63 19,12 0.038 ! 2.28 J
11 693 2.159 .952 .231 17.66 .759 .880 1351 16.12 16.20 .22L 2.71 J !
T 686 4. 763 . l.5hk .233 70.93 455 648 1713 7.32 13.03 .039 2.89 J
_I 13 473 4,854 1.347 .254 67.27 333 | .501 1506 3.50 7.00 .013 ——- J
14 436 4.795 1.211 .219 79.93 .287 460 1599 ‘ 2.32 5.38 ' .013 3.12 J
15 635 240 .2%0 .508 .188 5.93 617 | 763 2260 26.10 2610 | .18 k30 J
I 16 210 .139 to337 .129 7.03 . .60k 674 2090 21.80 21.80 .120 4.65
17 210 .369 .565 .107 9.22 | 561 Nan 2230 17.k0 17.40 .107 2.73 J
18 183 265 "m0 .158 5.83 | .54 615 2020 18.10 18.10 152 3.94 g o
19 180 . 504 .710 116 13.18 | 468 V554 2140 11.60 11.60 .116 2.67 J
20 150 .139 .278 127 4,73 486 .548 1910 14,20 14,20 .120 481
28 1.270 1000 1.619 1.000 223 13.29 1.195 1.268 1473 25.57 26,74 204 2.9 J
29 1.270 1000 1.619 i 1.000 274 8.26 1.204 1.329 1402 25.62 31,69 .126 —— J
30 | Ha 1.000 1000 .538 .15 1.000 .12 9.88 k,701 | 10.851 2370 11.00 12,50 .025 ' 3.00 J
31 | Hs 1.000 1000 .538 0 1.000 106 7.00 5.320 | 12.ko7 2050 2k, 50 24,50 .106 1.82 J
3e Na 1.270 580 3.760 .38 1.157 222 65.59 . 408 575 1724 3.29 7.36 067 1.86 J
33 N= 1.270 580 3.529 o] 1.157 .203 50,82 462 637 1505 5.30 T.17 .022 2.98 J
34 Nz 1.270 500 2,268 1.0 683 14,10 .609 .718 1119 12,23 13.12 JLET 2.34 J
37 Ha 635 1000 2.270 k.0 073 98,65 1.529 | 10.150 4760 12.ko 2k, 50 022 2.39 J
38 | N 635 1000 2.268 1.0 .058 80,71 .02 | 1.571 1408 40,89 80.65 .015 1.23 N)
39 1.270 1500 1.4oo 1.0 243 12,51 1.833 | 2.439 1470 45.50 47,10 .190 2.65 J
by 635 500 2,270 4.0 160 53.67 721 842 3140 45,10 48,80 .028 1.94 J
ke 635 500 10,000 10.0 284 99,19 .351 766 6480 138.00 279,00 .012 1.89 J
43 .635 1000 10,000 10,0 J1hh 99.82 278 . 180 4660 54,60 143,00 .006 L.7h J
b .635 250 10.000 11..0 .The 86.65 .279 391 3260 21.50 110.00 .000 2.12 J
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LEGENDS FOR THE COLUMNS OF TABLE IT

Figure number - figure in which the numerical solutions are shown pictorially
at the end of this report.

Gas - type of gas used in the calculations (the gas properties used are shown
in fig. 3).

Constrictor diameter - diameter of the constant area portion of the
constrictor.

Current - the total arc current passed through the constrictor.

Flow rate at exit - the total gas flow passed through the constrictor (when
no gas enters through the constrictor walls, this is equal to the gas
flow rate at the inlet).

Transpiration cooling mass flux - the gas flow transpired through the
constrictor walls.

Inlet pressure - pressure at the constrictor inlet.

Constrictor length - the length between the constrictor inlet and the
constrictor exit.

Percent radiation at exit - the percentage of the wall heat flux at the
constrictor exit that is due to the radiation heat losses.

Mass average enthalpy at exit - the energy flux at the constrictor exit
divided by the flow rate (this is the average enthalpy obtained by sub-

tracting the total heat losses from the total power input and dividing
by the flow rate - normally called the first law enthalpy measurement).

Space average enthalpy at exit - %‘j;h dA at the constrictor exit.

Voltage gradient at exit - the voltage gradient within the arc measured at
the constrictor exit.

Wall heat transfer rate at exit - the heat transfer rate impinging on the
constrictor wall at the exit.

Maximum wall heat transfer rate - the maximum heat transfer rate impingement
on the constrictor wall.

Length at maximum wall heat transfer rate - the axial position at which the
maximum wall heat transfer rate occurs.
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Computing time - the compubting time required on the IBM TO94 for this
numerical calculation.

Flow choked at exit - a check in this column indicates that the flow is
aerodynamically choked at the constrictor exit.
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TABLE IIT.- THEORETICAL ESTIMATES OF THE. PROPERTIES OF THE PIASMA PRODUCED BY
A CONSTRICTED-ARC PILASMA GENERATOR FOR ONE SET OF OPERATING CONDITIONS

Plasma generator size

Diameter of the constant area constrictor . . . . « + . .
Length of the constant area constrictor . . . . . + . . .
Diameter of the nozzle exit « &« ¢ o« ¢ ¢ ¢ ¢ o ¢ o » o o &

Operating conditions

Current o o « o o o« o o o 6 o e 4 s s s 4 4 4 s e 4 e e s
Arc voltage e & e e e e e e o s 8 s e + e e s % o a

Mass flow rate (nltrogen) e e e e e e e e e e e e e e
Chamber Pressure .« « ¢ « o o o o o o s o o o o s o o o o

Resulting maximum constrictor wall heat transfer rate . .
Efficiency of constricted arc o o« o« o » ¢ ¢ o o o o ¢ o

Plasma properties at the constrictor exit

Center-1line enthalpy =« o ¢ « ¢ « o s o ¢ o o o o o o o &
Center~line energy flux densify « « « o o o o o ¢ o o o &
Center-~-line velocity « ¢« ¢ o o o o o« o o s o o o o o o &
Center-~line temperalture « « « o« o« o o 5 o o ¢ o o o o o &
Pressure + o o o o o o o o o o o s o o o o o o o o s o

.« . 0.00635m
e . 0.16m
e « « .+ 0.0318m
e« « « « « 500 Al
.« e e v . 620V

. . 0.00227 kg/s
. 4.05x10° N/m?

(4.0 atm)
. 4.8x107 W/u?
53 percent

e o 1.4x10% J/kg
. . 8.7x10° W/nP
. . lhooxio® m/s
.. 16,000° K

. 2.2x10° N/m?

Center~-line electron number density . . « « « « . . 3. 5><lOl7 electrons/cm
Center-~line degree of ionization . . « o« ¢ ¢ ¢ ¢« o o« o ¢ o & gercent
Center-line electrical conductivity « « o « o « o ¢ « & o & 7XlO 1/0-m

Plasma properties at the nozzle exit

Size of uniform stream (less than 10-percent variation) .
Center-line total enthalpy .« ¢« ¢ ¢ ¢ « ¢ o « o o o o o o
Center-line energy flux density . « o« o ¢ o o o « o o ¢ @
Center-line veloCcity =+ ¢ o ¢ ¢ o ¢ o« o ¢ o ¢ o o o o o
Center-line density o« o« o ¢ ¢ ¢ o o ¢ o o o o o « o o & o
Center-line electrical conductivity (order of

magnitude Only) « « « « o ¢ o 4 4 s 8 0 e 0 e e s e .
Center-line Reynolds number per cm (order of

magnitude ONLY) « o o « o o o o o o s s o 6 o e 6 4 e s
Center-line magnetic Reynolds number per cm‘(order of

magnitude ONLY) o« © ¢ « 4 4 o s o 4 6 6 e e s e

Plasma properties in the stagnation region ahead of a blunt
Ent halpy L . . L] . L] L] L] . . L] L] L] L] - L L L . L] . » L] .

TemperabUre o o o o o o o o o o o o o o s o ¢ s s o s o o
Pressure . . . L] L] . L] L] L] L] . . - L] * . . . L] . L L] L] L]

o . e o 0,01l m
1. 5%x108 J/kg
3.5%108 W/m®

. 9x10° m/s

. 1.2x107% kg/m®

. . bx10® 1/0-n)
B [ ¢

o o e s o 0.5
test body

. . 1.5x10% g kg

e o o 14,500

... 2x10% N/m2
(0.2 atm)

Electron number 4ensity « « o o « « o o o o o o o » o . 4X10'® electrons/cc

Degree of ionization . ¢ ¢« ¢ o o ¢ o o ¢ o ¢ o o o o o @
Electrical conductiviby o o« o ¢ ¢ o o o o ¢ s o o o o o o

o« 75 percent
e .+ . 5x10° 1/0-m
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Figure 2.- Values of gas properties used to prepare tapes for the numerical calculations.
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Figure 3.- Values of gas properties generated from the prepared tapes by the machine programs for the

numerical calculations.
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(v) Symmetric constricted arc.

Figure U4.- Mesh configuration for finite difference r

eprese

ntation.
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Constrictor

(a) Constant area constrictor.
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(b) Flared inlet constrictor.

Figure 5.- Pictorial representation of the numerical solutions for the
symmetric constricted arc.
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Figure 6.- Parabolic enthalpy and uniform velocity inlet distributions.
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Figure 9.- Parabolic enthalpy and velocity inlet distribubiouns.
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Figure 10.- Comparison of numerical solutions with experimental measurements; 1.27-cm-diameter
constrictor; I = 896 A, m = 4.80 g/s.
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Figure 13.- Comparison of the numerical solutions with exper imental measurements; 1.27-cm-diameter

constrictor; T = 473 A, n = 4.85 g/s.
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Figure 31.- The hydrogen arc with water -cooled constrictor walls.
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Figure 33.- The nitrogen arc with water-cooled constrictor walls.
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Axial station no. | Axial station no. 13

z= 0 m z=  .0029 m

Hn=  8.363xI0° J/kg Hm=  2.239x10° J/kg
= 5020 V/m = 2943 V/m

Upo=  6:594x10"  W/m? U™ -O74x10%  wW/m?
= 1.16 atm = L.I5 atm

(a) Constrictor inlet. (b) 0.0029 m from the constrictor inlet.

Figure 35.- The asymmetrical constricted arc with an axial flow of gas; enthalpy and mass flux as
functions of radius and azimuthal position; I = 580 A; m = 0.00353 kg/s; R = 0.00635 m; Zo = 3.50 m;
he = 1.89x10% J/kg; m/A = 27.8 kg/sn®; py = 1.17x10° N/w? (1.16 atm).
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Figure 35.- Continued.
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hydrogen arc.
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Figure 38.- Example of the high energy flux density that may be obtainable with a small diameter
nitrogen arc.
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average enthalpy - intermediate constrictor length.
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average enthalpy - shorter constrictor length.
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